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The sexes show profound differences in responses to infection and the development

of autoimmunity. Dimorphisms in immune responses are ubiquitous across taxa, from

arthropods to vertebrates. Drosophila melanogaster shows strong sex dimorphisms in

immune system responses at baseline, upon pathogenic challenge, and over aging. We

have performed an exhaustive survey of peer-reviewed literature on Drosophila immunity,

and present a database of publications indicating the sex(es) analyzed in each study.

While we found a growing interest in the community in adult immunity and in reporting

both sexes, the main body of work in this field uses only one sex, or does not stratify

by sex. We synthesize evidence for sexually dimorphic responses to bacterial, viral, and

fungal infections. Dimorphisms may be mediated by distinct immune compartments,

and we review work on sex differences in behavioral, epithelial, cellular, and systemic

(fat body-mediated) immunity. Emerging work on sexually dimorphic aging of immune

tissues, immune senescence, and inflammation are examined. We consider evolutionary

drivers for sex differences in immune investment, highlight the features of Drosophila

biology that make it particularly amenable to studies of immune dimorphisms, and

discuss areas for future exploration.

Keywords: Drosophila, Drosophila melanogaster, innate immunity, sex dimorphism, aging, response to infection,

sexual antagonism

INTRODUCTION

Sex governs physiology: differences between males and females are strong drivers of variance
in phenotype within any population, and can eclipse effects of geography or genotype (1, 2).
The immune system is no exception. Sex differences in human immunity are profound, where
men and women respond differently to infection, treatment, diseases such as sepsis, and have
different propensities toward autoimmunity (3, 4). However, the mechanisms underpinning these
dimorphisms are largely unresolved. Amajor reason for this lack of resolution is that sex differences
in immunity are understudied; in particular, there is a paucity of truly comparative studies.
A recent meta-analysis addressing the issue of sex as a variable in biomedical studies showed that
immunology as a discipline is particularly negligent, with fewer than 10% of studies reporting,
or stratifying, by sex (5). Historically, women have been excluded from clinical trials and young
males presented as “the norm,” in part due to concerns for potential impacts on fetal health (6).
Parity has not been reached in representation (7) or reporting (8) of the sexes, despite the effective
ban on women participating in clinical trials ending in the 1980s (6). In addition, in studies
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using laboratory model organisms, practical and budgetary
considerations have led to the common practice of using a
single sex. Recently, there has been recognition of the loss of
knowledge propagated by the lack of inclusion of both sexes, with
a drive from the scientific community to address the “gender
gap,” including NIH and ERC commitments to address this
specifically (9, 10).

The effects of immune dimorphisms are not only a
consideration for clinical research, but also impact our broader
understanding of host-pathogen interactions. Sex differences in
immunity are observed throughout taxa, and are both cause
and consequence of sex differences in life history, and sexual
conflict. Responses to infection influence survival and fecundity,
and therefore immune dimorphisms have the potential to affect
both horizontal and vertical disease transmission throughout
the animal kingdom (11). Inherant in the consideration of
sex and immunity is complexity: within a single species,
dimorphisms themselves are pathogen-specific (12), can respond
to environmental variables such as diet (13, 14), and may even
be influenced by the infective parasite which can be differently
adapted to each sex (15). Adding further complexity is the
interaction of immunity and sex with organism age (16).

As is the case for all insects, Drosophila melanogaster
physiology is sexually dimorphic (17–19), yet despite its use
for more than a century as a model organism, the extent of
these dimorphisms are only just being fully appreciated (20). Sex
differences are seen in immune tissues (21, 22) and in responses
to infection (23), yet relatively few studies include both sexes.
Studies that explicitly compare immune responses in both sexes
in Drosophila reflect what is seen in other taxa in terms of
prevalence and complexity: dimorphic responses are the norm
rather than the exception, the direction that dimorphisms take
with respect to the opposite sex is both pathogen- and context-
dependent (23), and sex differences at baseline are not necessarily
predictive of survival outcome (24).

What Can Drosophila Teach Us About
Immune Dimorphism?
Drosophila species have been used for many decades to study
sexual antagonism in the evolutionary ecology field (25–27). We
argue that including, and comparing, both sexes in functional
and mechanistic studies of Drosophila immunity will add to
this body of work to give important insight to several fields,
in addition to better understanding host-pathogen interactions
from an evolutionary ecology perspective. It will, for example,
offer translatable information on disease vector biology, where
sex is a crucial variable for exposure, transmission, and control
strategies of insect disease vectors such as mosquitos (28–30).
Drosophila provides a tractable model for innate immunity
in mammals, as has been amply demonstrated over recent
decades (31): studies on Drosophila could help understand
rules underpinning sexual dimorphism in mammalian immunity
and response to infections. Sex differences in mammalian
immunity are often attributed solely to the action of steroid
hormones. Interactions between steroid hormones and the
immune system have also been demonstrated in Drosophila

(32, 33), which may parallel endocrine-immune interactions in
mammals. Mammalian immune dimorphisms arise not only
as a consequence of selective pressures on the endocrine
system. A large body of studies in mammalian immunology
has uncovered many dimorphisms, particularly in autoimmune
disease etiology, that are regulated by karyotype, independent
of hormonal action (34–36). While it is difficult to attribute
autoimmunity to organisms without immune self-recognition,
direct self-damage by immune responses on the host has been
demonstrated in Drosophila (37, 38) and may differ depending
on the sex (39). Drosophila, like mammals, bear X and Y
sex chromosomes, and both X- and Y-linked variation in
immune responses have been demonstrated (40, 41). This, in
combination with the strong conservation of immune signaling
pathways (as exemplified by Toll/TLRs), makes Drosophila a
powerful model for sex-specific genetic regulation of molecular
immunity (23, 42).

A Survey of Immunity Studies Using Adult
Drosophila melanogaster
We have undertaken to perform a survey of peer-reviewed,
published studies of D. melanogaster immunity, reporting on
the representation of sex within each study. We have focussed
on studies using adult flies, while also identifying papers that
use juveniles, cell cultures, or pre-existing genetic data. We
searched for Drosophila immunity papers through Web of
Science, attempting to avoid studies of other model organisms
that mentioned Drosophila. As of the 21 August 2019, we
downloaded the citations for the resulting 5,626 publications and
manually categorized each paper. Two thousand eight hundred
and forty-eight papers were removed since Drosophila were not
used in the study, or the focus of the study was not immunity.
We alsomade a decision to exclude the 166 endosymbiont studies
that used both sexes from our analysis. There were also three
papers which we could not access, which were removed (43–
45). Of the remaining 2,614 papers, 1,369 used adults, 817 used
juveniles, 396 were non-experimental (i.e., reviews or methods),
and 30 were bioinformatics studies (Figure 1A). In the last 30
years, we can see how the Drosophila immunity field has grown
and the relative use of adults or juveniles has changed. In 1990,
only two adult studies and three juvenile studies were published
(Figure 1B). Initially, the majority of studies were conducted on
juveniles, but by 2010, the trend had reversed, where 75 studies
used adults and 47 used juveniles. The use of adult Drosophila to
study immunity has continued to grow, averaging over 100 adult
studies per year between 2012 and 2018 (Figure 1B). Of the adult
studies, 41% (564/1,369) did not report the sex, or did not stratify
data by sex. When sex was reported, 45% used only one sex, with
more studies using females (28%; 378/1,366), than males (18%;
243/1,366). Only 13% (184/1,366) of all adult studies reported
results for both males and females (“both” category; Figure 1C).
We additionally tagged each paper in the “both” category with
the study type or data output (Figure 1D, Figure S1). Tags were
not exclusive, where studies could be assigned multiple tags,
resulting in more tags than articles in the output. The two most
common tags were “gene function/knockout” (23%; 76/334),
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FIGURE 1 | Composition of 2,614 articles on Drosophila immunity. (A) Categories used for all Drosophila immunity studies. Size of each rectangle is proportional to

the number of articles within that category. The largest proportion are adult studies (purple; 1,366), followed by juvenile (yellow; 817), non-experimental (pink; 396),

and bioinformatic (orange; 30) studies. (B) The quantity of articles published since 1990 until 21 August 2019 that use either adult (purple) or juvenile (yellow)

Drosophila. (C) Quantity of adult Drosophila studies that do not report sex used (purple; 561), use females (pink; 378), use males (orange; 243), or use both sexes

(yellow; 184). (D) Total number of articles that used both sexes, tagged according to experimental output. Tags are not exclusive, so some articles may have more

than one tag. The tags used were gene function knock out (46), survival infection dynamics (47), fitness (39), lifespan (32), tissue specific (30), microbiome (24),

signaling (19), behavioral (18), transcriptomics (16), metabolism composition (8), and proteomics (4).

followed by “survival/infection dynamics” (20%; 68/334). The
survey information is available as a searchable table, intended as a
resource for locating data on immunity in both sexes (Table S1).
Integrating information from this wealth of published data, we
review what is reported about sex dimorphisms in immunity
in Drosophila.

SEX DIFFERENCES IN INFECTION
OUTCOMES

Survival and Pathology
Drosophila exhibit dimorphic survival and pathology in response
to bacterial, viral, and fungal infections. Importantly, dimorphic
survival and prevalence of infection are pathogen- and context-
specific (Table 1).

Viral Infection
Few studies have compared male and female responses to viral
infection in D. melanogaster.Males are possibly more susceptible
to acute viral infection: they demonstrate lower survival to the
recently-described, DNA virus Kalithea (KV), which was isolated

from infected individuals caught from a wild population (48).
Males are also more susceptible to higher viral titers of the
RNA virus Drosophila C (DCV) (59). Notably, dimorphism in
survival to viral infection might be influenced by coinfection
with Wolbachia, an endosymbiont providing viral protection
(60). Indeed, interactions between DCV andWolbachia infection
status and sex have been observed in analyses of behavioral
responses (61), discussed in more detail below.

Other effects of viral infection can impact the sexes differently,
in addition to survival. For example, although females infected
with KV generally survive, they suffer from ovary degeneration
and a strong reduction in fecundity (48). Viral-induced female
infertility is known to occur in infections with flock house virus
(FHV) due to oocyte destruction (62). Thus, conclusions on sex-
specific impacts of viral infection on fitness need to consider all
consequences of infection, not just survival.

Viral Transmission
A recent study demonstrated that male-biased DCV titers are
accompanied by higher levels of fecal shedding (59), which is
in apparent contrast to an earlier study that found females to
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TABLE 1 | Reported sex biases in survival to infection by specific pathogens.

Class Pathogen Survival

bias-direction

References

Viral Kalithea Female (48)

Fungal Beauveria bassiana Male (49–53)

Metarhizium anisopliae Male (54)

Candida albicans Female (55)

Microsporidial Tubulinosema ratisbonensis Female (56)

Bacterial

gram-negative

Pseudomonas aeruginosa Male (46)

Pseudomonas aeruginosa Female (55)

Pseudomonas fluorescens Female (22)

Providencia rettgeri Male (23)

Providencia alcalifaciens Male (23)

Coxiella burnetii – (57)

Serratia marcescens Female

(Genotype-specific)

(58)

Gram-positive Enterococcus faecalis Male (23)

Lactococcus lactis Female (58)

be better transmitters of DCV than males (63). It is not known
whether load, or rates of shedding, are necessarily predictive
of the ability of each sex to transmit viral infection; this
may be dependent upon several additional factors, including
infection route and behavioral responses to infection. Further
studies correlating viral load and shedding with the ability to
transmit infection in both sexes will be informative. Vertically-
transmitted viruses by definition interact with host sex, given
their route through infected gonads. For example, Sigma virus
(Rhabdoviridae), a negative-stranded RNA virus, is transmitted
vertically through the sperm or ovules. Male transmission
of Sigma virus is required for persistence in the population,
while transmission efficiency is higher for females than males
(64). Infection with Sigma virus leads to sexually dimorphic
gene induction, with more gene expression changes induced
by infection in males than females (65). Infected females
significantly upregulate structural chorion proteins, which could
reflect manipulation by the virus to aid vertical transmission, or
an ovary-specific defense response.

Given the very small number of studies addressing
dimorphisms in survival to viral infections, we do not yet
have the ability to make inferences about sex differences in anti-
viral responses, nor indeed whether there are differences between
responses to RNA and DNA viruses, or diverse viral species.

Fungal and Microsporidial Infection
To our knowledge, there are only a small number of studies
investigating sexual dimorphism in fungal infection. Indeed there
is a dearth of studies investigating sex-specific physiological
responses to such challenges (Figure 2). The most commonly
studied fungal infection model, Beauveria bassiana, exhibits
male-biased survival when flies are challenged via spore
inoculation (49–53). The dimorphism appears to be, at least
partly, attributable to dimorphic function of the Toll pathway,
where loss-of-function mutants in Toll pathway components

lose the sex difference in survival (52, 53). A similar male
bias in survival is observed post-inoculation with the soil
fungus Metarhizium anisopliae (54). However, although not
directly compared, males appear to be more susceptible to
systemic Candida albicans challenge by means of intra-thoracic
injection (55). Interestingly, the effect of Toll-1 and Toll-7
mutation on resistance to C. albicans challenge revealed a
greater sensitivity of male mutants to this fungal infection,
while Toll-7 mutant females demonstrated resistance similar
to that of controls (55). In addition, males succumbed to
systemic infection with the microsporidium Tubulinosema
ratisbonensis sooner than did females (56), despite a lower
reported microsporidial load. However, the assertion made here
that despite a greater lethality to T. ratisbonensis, males show a
higher resistance as demonstrated by their lower pathogen load,
needs further investigation. Pathogen load should be quantified
before significant mortality has occurred in the population of
infected individuals, otherwise, individuals with a high pathogen
load who died prior to sampling would not be included in the
analysis. A greater number of infected males had died 5 days
post-infection from T. ratisbonensis than females, and pathogen
load was analyzed 6 days post-infection (56). These results could
potentially suggest that males are less tolerant, given that the only
individuals still alive are those carrying a lower pathogen load.

Overall, in contrast to viral infections, males appear to
survive longer than females in fungal infection models. There
are indications that the magnitude of these dimorphisms in
survival may be dependent on the environment. For example, the
male-biased survival observed upon infection with B. bassiana
is magnified by cold pretreatment of flies before infection,
improving male survival at young and middle ages (81). Diet is
also likely to influence susceptibility; for example, while females
have decreased rates of survival to B. bassiana thoracic injection,
immunity-induced metabolic declines were 50% greater in
males (82). Supporting the interaction of metabolic state with
sex-biased infection outcomes, polymorphisms associated with
increased resistance to M. anisopliae inoculation are dimorphic
and are biased toward gene networks regulating metabolism, as
well as phagocytosis and cell migration (83). Furthermore, in the
microsporidia infection model T. ratisbonensis, the quantity of
circulating triglycerides was shown to affect parasite burden in
females (56). The intersection of diet, metabolism and immune
responses is likely to dictate outcomes to infection with most
(or all) pathogens, as we discuss in more detail below. However,
whether metabolic effects regulate resistance or tolerance to
the fungal and microsporidial infection models described is as
yet untested.

Bacterial Infection
The bacterial genus of Wolbachia and Spiroplasma have well-
documented interactions with host sex and have been extensively
studied in Drosophila infection models. Both bacteria disrupt
the reproductive biology of their hosts, and show sex-specific
transmission. While these interactions are entirely dependent
on host sex, these examples are not strictly relevant to
examination of dimorphic immune responses, and have already
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FIGURE 2 | Schematic representing sexual dimorphisms in innate immunity at basal state (A) and in physiological responses to immune challenge (B). (A) Male- and

female-specific baseline conditions are depicted on the left and right of the central dashed line, respectively. Greater expression/ numbers are denoted by an

upward-facing arrow, while stand-alone genes belonging to systemic or specific tissues represent sex-specific expression systemically or within that tissue,

respectively. The dashed arrow represents the potential contribution made by the ovaries to observed differences in systemic transcript abundance. (B) Male (left

column) and female (right column) physiological responses to viral, fungal/microsporidial, and bacterial are listed, with the causative pathogen in brackets. Increases

and decreases in expression or behaviors are denoted by upward- and downward-facing arrows, respectively.

been extensively reviewed (47, 84–87), so we will not focus on
them here.

In models of systemic bacterial infection of male and
female adults, where immune responses and survival are
directly compared, survival to infection appears to be pathogen-
dependent. Depending on the amount and type of peptidoglycan
(sugar- and amino acid-based polymers) in their cell wall,
bacteria can be categorized into two groups, Gram-positive
(G-) and Gram-negative (G-). In Drosophila, the production of
immune effectors such as antimicrobial peptides is under the
control of the immune deficiency (IMD) and the Toll signaling
pathways. The former responds to the meso-diaminopimelic acid
(DAP)-type peptidoglycan of G- bacteria and certain G+ bacilli,
whereas the Toll signaling pathway responds mainly to the lysine
(Lys)-type peptidoglycan of G+ bacteria and fungal beta-1-3-
glucan (88, 89). Activation of immune signaling pathways are
not strictly dictated by cell wall type, however; for example, both
Toll and IMD signaling pathways are activated by Staphylococcus
aureus infection (90).

It is not possible to neatly attribute the direction of sex-
biased survival to bacterial infection to one particular signaling
pathway. Males appeared to be more resistant to systemic
infections by the extracellular G- Providencia species Providencia
rettgeri and Providencia alcalifaciens (23, 91). However, mortality

to the obligate intracellular Coxiella burnetii is comparable in
males and females (57), while males died more quickly than
females when infected with Pseudomonas fluorescens (22), or
the extracellular bacteria Serratia marcescens (although notably,
this was genotype-specific) (58). Few studies have assessed
the response of both sexes to G+ bacteria. Females were
reported to be more susceptible to infection with Enterococcus
faecalis but less to S. aureus (23) or to Lactococcus lactis
(58). Thus far, laboratory models of bacterial infection have
demonstrated both male- and female-biased survival with G-
and G+ species (Table 1). Different laboratories have also
reported opposite biases in response to the same pathogen.
For example, Pseudomonas aeruginosa is reported to induce
dimorphic survival that is either male- or female-biased (46,
55), or not significantly different (22). These contrasting results
may be dictated by genotype, as is evidently the case for male-
biased susceptibility to S. marcescens,which was observed in only
two out of four genetic backgrounds tested in a recent study
(58). These results may also be influenced by environmental
conditions such as mating status, which appears to have an
immunosuppressive effect on females (23, 92, 93). Another
probable reason a clear pattern has not emerged is that the
bacterial species used in these infection models are more diverse
than the peptidoglycan dichotomy belies. Compared to P. rettgeri,
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S. marcescens is highly pathogenic toDrosophila, and its infection
dynamic within the host is very different (23). Moreover,
while these two bacteria are extracellular, other species, such
as Coxiella, infect intracellularly, further complicating the
comparison. Different pathogens require different host defense
mechanisms, which may rely on particular immune tissues,
signaling pathways, and terminal effectors such as AMPs. Amore
systematic comparison between male and female responses to
a range of different bacteria with different modes of infection
will help to decipher the role for immune signaling pathways
in dimorphism.

A role for the Toll pathway in mediating sex differences
in survival to some bacterial infections has recently started to
emerge. It appears to be necessary for dimorphic survival to
P. rettgeri, and loss of Toll signaling reverses the survival bias
to E. faecalis (23). Loss-of-function mutants of both Toll-1 and
Toll-7 differentially affected infection outcomes in males and
females. Toll-1 mutant males and females were less resistant to E.
faecalis challenge than wild-type controls, while loss-of-function
Toll-7 mutants reduced male resistance to both E. faecalis and
P. aeruginosa (55).

Behavioral Responses and Symptoms
In addition to dimorphic immune responses, Drosophila exhibit
sex-specific behavioral symptoms and responses to infection.
Grooming is thought to be an important behavioral defense
against pathogenic infection, where flies remove potentially
infectious microbes from their cuticle. Grooming in D.
melanogaster is triggered by chemosensation of compounds,
including pathogen components, by chemoreceptive sensilla.
Specifically, the sensing receptor PRGP-LC contributes to
grooming induction, connecting humoral immune sensing to
behavioral responses (94). In optogenetic experiments targeting
sensilla, grooming was more readily triggered in males than in
females (94). Females were subsequently shown to rely more
strongly on olfactory signals to remove cuticular B. bassiana
than males, resulting in more conidia on the wings of olfactory-
deficient female flies (95), but whether this contributes to the
higher rate of survival bymales afterB. bassiana infection (49–53)
remains to be seen. Drosophila exhibit dimorphic sleep responses
to infection, a behavioral change which may be adaptive, or
symptomatic. DCV causes females, but not males, to sleep
more; however, DCV-infected male flies carrying Wolbachia
are more lethargic when awake (61). Many other behaviors
are likely to be impacted by symptoms such as lethargy and
sleep alterations, including evasive behaviors and mating. For
example, Wolbachia infection increases the recapture rate of
females, but not males (96). Females previously exposed to DCV
showed lower motivation to pick a food source when presented
with a risk of encountering DCV (78). When disrupted,
nemuri, an antimicrobial peptide that promotes sleep in D.
melanogaster, reduced day-time sleep consolidation selectively
in males (97), potentially linking dimorphic sleep behavior and
responses to immune challenge. During a P. rettgeri systemic
infection, females arrested egg-laying during the acute phase
of the infection, until it stabilized into a chronic phase (98).
The same observation has been made upon benign infections

with Pectobacterium carotovorum (previously named Erwinia
carotovora carotovora, or Ecc15) and Escherichia coli (99). The
adaptive role of this behavioral response (99, 100) is not
clear and is by definition female-specific. It remains to be
determined if changes to reproductive behavior occur in males.
Although research in this area is in its infancy, these studies
suggest behavioral dimorphisms in D. melanogaster could be an
important driver for sex differences in infection outcome.

SEX DIFFERENCES IN IMMUNE
COMPARTMENT PHYSIOLOGY

Sex differences in outcome to infection are likely to be mediated
by distinct immune compartments, where the key tissues
involved will be dependent on pathogen and route of infection.
Below we discuss those studies that assess the contribution
of individual immune tissues. Sexually dimorphic immune
physiologies in unchallenged flies and after acute infection are
summarized in Figure 2.

Hemocytes
Hemocytes are specialized immune cells responsible for the
encapsulation and phagocytosis of pathogens and dead cells. Few
studies focusing on D. melanogaster hemocytes have reported
the sex of individuals used; but those that have, present some
evidence suggestive of a dimorphism in this branch of the
immune system. First, it appears that hemocytes can have sex-
specific functions. The Jun N-terminal kinase (JNK) signaling
pathway regulates the decision between cell repair and cell death.
As such, JNK/Basket is required in larval hemocytes to promote
tissue maintenance, but only in males, such that hemocyte-
specific loss of JNK/Basket results in increased tissue damage in
males after UV irradiation (101). In addition to this functional
difference, there is some evidence for sex differences in total
hemocyte number, but neither the direction of bias nor the
drivers for the dimorphism can yet be concluded. Female white
prepupae have been reported to contain a higher total number
of hemocytes than males (102). In adults, higher numbers
of hemocytes per se in females (23), and higher numbers of
hemocytes per unit of hemolymph in males (21), have been
reported, whilst a recent study found no effect of sex on adult
hemocyte number (22). A subtly higher phagocytic index has
been reported for male hemocytes ex vivo (22); however, sex
differences in the functional roles of hemocytes in homeostasis
or responses to infection are as yet unknown.

Melanisation
Melanogenesis is an important feature of arthropod physiology.
In addition to its role in cuticular hardening, via the synthesis of a
specific melanin called sclerotin, and in cuticular coloration, via
the synthesis of eumelanin, multiple studies have demonstrated
its role in immune responses [see (103) for review]. An
essential role for immune melanization in the efficient killing of
encapsulated parasitoid wasp eggs and pathogens via cytotoxicity
of reactive oxygen species (ROS) produced by the melanization
cascade is well-appreciated (104, 105). The process hinges on
cascades of serine proteases (SPs) triggered by either direct or
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indirect antigenic recognition and tissue damage (106). A key
enzyme in this process is phenoloxidase (PO), whichmediates the
oxidation of the amino acid tyrosine to dihydroxyphenylalanine
(DOPA) and subsequently, the oxidation of DOPA and
dopamine to their respective quinones which are precursors of
brown/black eumelanin. PO is produced as prophenoloxidase
(PPO) proenzyme which is converted to active PO by a clip
domain serine proteinase. This cleavage generates ROS, giving
immune melanization its cytotoxic activity.

Whereas the biochemical pathways downstream of PO are
well-characterized, our knowledge of the molecular events
leading to PPO activation are largely unelucidated (103). The
involvement of Toll signaling in melanization responses has
recently been demonstrated in adults (106). Hayan and SP7,
two SPs acting upstream of Spätzle, activate PPO1 and PPO2,
which were shown to be essential for effective resistance against
several systemic fungal and G+ bacterial challenges (106, 107).
Mutants for PPO lack melanization, yet, maintained a dimorphic
survival to P. rettgeri infection (23), suggesting that the activation
of this immune response is not a driver of sex differences in
survival to this particular pathogen. However, basal expression of
some genes involved in melanogenesis are higher in males and a
subset of these, including Dopa decarboxylase (Ddc) and yellow-f,
respond transcriptionally to P. rettgeri infection (23). Alternative
infection models where melanization is required to effectively
control the infection may be more informative for understanding
its potential roles in immune dimorphism. For example, the
response of males and females to parasitoid wasp infection at
larval stages has not been reported to our knowledge. Despite the
importance of melanization for resistance to infection and injury,
and the intersection of immunologic melanin production and
Toll signaling, virtually no studies have assessed the sex-specific
physiology of the response. Given that constitutive expression of
Toll pathway genes, namely components upstream of Toll-1, as
well asDdc, is greater in males (23), the hypothesis that males are
more poised for melanization warrants testing.

Systemic (Humoural) Immunity
A number of studies have reported sex differences in systemic
immunity (Figure 2). Systemic immunity is primarily driven by
the fat body; however, expression levels of pathway components
were largely measured in whole individuals. For example,
following systemic challenge with P. rettgeri, males induced a
number of Imd- and Toll-regulated effectors at higher level than
females, paralleling their greater survivorship (23). Although to
note, ablation of the Imd pathway does not suppress the sexual
dimorphism in survival (23). Sex differences have repeatedly been
found in expression and function of Toll pathway components.
Females are reported to exhibit higher expression of Toll-1,
the transmembrane receptor that activates the Toll intracellular
signaling pathway (55), the Relish protein dorsal (74) and the Toll
pathway component ntf-2 (75). The Toll pathway is known to be
involved in two processes: dorso-ventral embryonic patterning, a
female specific process occurring in the eggs, and in immunity.
Signaling downstream of the transmembrane receptor Toll-1 is
shared between these two processes. Thus, it is unsurprising
that the apparent dimorphism in Toll pathway gene expression

disappears once expression in the ovaries is excluded (23).
Nonetheless, the expression of the Toll pathway seems crucial
for the sexual dimorphism of many infections. This includes
both G+ bacterial infection but, perhaps surprisingly, also G-
bacterial infection (23). This occurs through the activation of
the pathway by Persephone, a hemolymphatic serine protease,
which senses microbial proteases during infection (108, 109).
Toll-3, also called MstProx, shows male-specific expression and
response to infection, which seems to be attributable to the
gonads (23, 72). Toll-5, or Tehao, is also induced at higher
levels in males than females following P. rettgeri infection
(23). Toll-7, a plasma membrane Toll receptor that binds
to viral glycoproteins, is expressed at higher basal levels in
males (23, 55) and appears to have an additional, male-specific
isoform (73).

Male-biased survival to B. bassiana also appears to be
dependent on the Toll pathway, since mutations in Toll
pathway components ablate or reverse the dimorphism (53).
The induction of drosomycin and metchnikowin in the first
24 h of infection also tended to be greater in males (52). The
survival dimorphism, however, was not suppressed when tested
on spaetzle (spz) mutants, a component of the Toll pathway
(52). These Toll-regulated dimorphisms may in part be mediated
by expression of AMPs: for example, attacins and diptericins
require functional Toll for full inducibility. Supporting this, the
loss of Toll affects the Enterobacter cloacae-induced expression of
attacins and diptericins more strongly in males (110), and males
with a gain-of-function Toll mutation exhibit higher levels of
the AMPs Cecropin A1 (CecA1), Diptericin A (DptA), Attacin
A (AttA), and Attacin B (AttB) in response to challenge (111).
Furthermore, dimorphic induction of drosomycin in response to
P. rettgeri infection is lost in spz mutants (23). Dimorphisms
have also been reported in Imd pathway components, for
example, several Imd-induced AMPs are found to be dimorphic
in their expression levels. Using a construct with various
diptericin promoter sequences upstream of the lacZ gene, higher
levels of induction were seen in females than males (79).
In contrast, diptericin has been shown to be expressed at
higher levels in unchallenged males than females, and is more
strongly upregulated upon infection with the G- bacterium,
P. carotovorum (24).

The JAnus Kinase protein and the Signal Transducer
and Activator of Transcription (JAK-STAT) pathway, required
for antiviral immune responses and induced upon bacterial
infection, also shows dimorphic expression. G9a, a histone H3
lysine 9 methyltransferase, regulates tolerance to viral infection
by regulating JAK/STAT (112) but in a sex-specific manner,
with females being more sensitive to a loss of G9a (113). In
addition, the stress-responsive genes regulated by the Jak-Stat
pathway, TurandotA, TurandotC, and TurandotM, were among
the genes that were the most male-biased in an analysis of the
transcriptional response to P. rettgeri infection (23), although the
consequences of this are as yet unknown. Overall, males have a
higher expression of many Toll- (and to a lesser extent Imd-)
regulated genes. The reason for this dimorphism is unclear, but
further work could investigate a potential link with the dual role
for the Toll pathway in females. It is possible that the immune
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response via the Toll pathway in females is constrained by its
consequences on egg development, a constraint which does not
apply to males.

Epithelial Immunity
Comprising the third prominent arm of defense in
D. melanogaster are the immune-reactive epidermal and
epithelial barriers such as the cuticle, trachea, genitalia, and gut.

Cuticle and Trachea
Sex differences in defense against fungal inoculation of the cuticle
with the entomopathogenic B. bassiana demonstrate female-
biased susceptibility (53, 114–116). Dimorphisms in cuticle
integrity, or in immune responses of the cuticle or respiratory
system could conceivably be underpinning this susceptibility.
The trachea, which consist of airway epithelia and spiracles, is
immunogenic, and responses may be activated by such cuticle
inoculations. Studies that have assessed tracheal immunity in
adults, thus far include only males (71, 117), rendering sex-
specific responses within respiratory tissue another unexplored,
potential contributor to dimorphic immunity. Dimorphisms in
cuticular epithelial immune responses per se are also, to our
knowledge, entirely unexplored.

Genitalia and Gonads
Male genitalia were found to be more primed for immune
response to bacterial infection than that of females, where
systemic and local AMP responses followed P. carotovorum
inoculation of the genitalia in males (80). The female
reproductive organs are also immune active, and were
shown to constitutively express cecropin (66) and drosomycin
(66–68), where drosomycin expression was found to be
independent of Toll signaling in this tissue (67). Males exhibit
constitutive expression of cecropin within the ejaculatory duct,
independent of Relish signaling (68), suggesting that genital
epithelia may circumvent classical pathways to activate AMPs.
Immunogenicity of the reproductive tissues is evident from
analyses of post-mating AMP responses in females (118, 119),
and the antimicrobial protein transfer frommale accessory gland
and ejaculatory duct to the female (120). Andropin, an AMP
unique to males, is also strongly upregulated in response to
mating (69). RNA-seq analysis of P. rettgeri infected males and
females, with and without gonads, illustrates the contribution
made by reproductive tissue to systemic immune responses
(23). Such comparative transcriptomics revealed male-biased
defensin levels following infection to be gonad-dependent (23).
It is an open question how much reproductive tissues contribute
to systemic immunity; indeed it is unknown whether AMPs
produced by the gonads are released into the hemolymph, or
remain within the tissue.

Malpighian Tubules
Malpighian tubules (MT), epithelial organs dedicated to filtration
and analogous to the mammalian kidney, are also immunogenic
(121). Transcriptomic analysis of MT revealed differences in
basal immune gene expression between the sexes (70); however,

nothing is known about sexually dimorphic functions of MT or
their contribution to immune dimorphisms.

The Intestinal Epithelium
The Drosophila gut is a major immune locus, responding
to infection by producing AMPs and reactive oxygen species
(122, 123). Infection-induced immune responses are observable
in males (122); however, while a small number of studies
have compared sex differences in gut metabolism (124), and
physiology (24, 124–126), most work on intestinal immunity
has focussed on females. Nothing is known about sex
dimorphisms in AMP or ROS production, nor indeed survival,
after oral infection. However, expression of several immune-
related genes have been reported. Nubbin, a transcription
factor with two isoforms, nub-RB and nub-RD (127) regulates
duration of immune responses within the gut. Nub-RD
mutants showed chronic immune activation in females (128),
whilst overexpressing nub-RB resulted in a similar phenotype,
illuminating their antagonistic roles within immune signaling
(127). Overexpressing nub-RBwithin enterocytes and subsequent
oral infection with P. carotovorum lead to total and 70% death
in males and females, respectively, within 24 h. Downregulation
of nub-RB enhanced survival to challenge in males compared
to controls, while having the opposite effect on females (127).
Overexpressing nub-RB significantly reduced the lifespans of
both sexes, conversely, males reared in germ-free conditions
had a slightly enhanced median longevity compared to
conventionally-reared counterparts (127). These data could
potentially illustrate a greater susceptibility of males to
immunopathology from both chronic immune activation and
commensals. Nubbin isoform antagonism may also offer insight
into dimorphic responses between the sexes, where expression of
each may differ, however, the cited study only quantified isoform
expression in males (127).

The luminal microbiome impacts intestinal immunity (123)
as well as many other aspects of D. melanogaster physiology
and behavior (129). This includes cellular immunity (130), and
response to enteric viral infection (131). Studies have shown that
the microbiota varies between the sexes in terms of load (24),
composition (132), and effect on metabolic responses to diet
(133). However, most studies assessing the gut microbiome have
only analyzed females, and thus we have very little knowledge
about the interaction of commensals with dimorphisms in
intestinal immunity. Microbiota populations, at least of the
two predominant genera Acetobacter and Lactobacillus, tend to
increase over aging (134), and composition varies between the
sexes, where aged males were reported to differ to a greater extent
than aged females when compared to their younger counterparts
(132). Aging is also associated with a loss of epithelial barrier
integrity in the gut (76, 77, 135). This phenomenon is more
pronounced in females (24, 76), and is paralleled by increases
in systemic immune activation, as indicated by systemic AMP
levels (76). Microbiota dysbiosis (77) and loss of a tricellular
junctional protein, Gliotactin (135), were shown to precede such
changes in females, and loss of an intestinal septate junction
protein, Snakeskin, exacerbates barrier loss and causes early
death in both sexes (136). These data highlight the link between
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microbiome dysbiosis, maintenance of a stable gut barrier, and
systemic inflammation. More work is needed to understand
the interaction of the dimorphisms involved; for example, the
apparently conflicting observations that the male microbiome
shows greater changes (132), but despite this, the male gut barrier
appears to be more stable over age (24). It is well-known that the
microbiome is modeled by diet, environment, and host genotype,
so comparing physiological data with microbiome data from
different labs may confound interpretation.

Aging and Immune Dimorphisms
Aging and Inflammation
Aging is known to be accompanied by heightened expression
of immune genes (37, 39, 137–139). However, cause and
consequence are difficult to separate, and understanding the
contributions made by age to altered immunity, and immunity
to aging, is challenging. When comparing the transcriptional
response to aging in whole flies, a strong sex-by-age interaction
was observed (139). Of the total significant probe sets, the
majority were biased toward males, while just over 25% were
sexually antagonistic. Included within this male-biased and
antagonistic set were immune-related genes, such as the AMP,
defensin (139).

In an experimental evolution study on lines where late-life
fertility, and indirectly longevity, was selected for over 35 years,
decreased expression of immune genes was strongly associated
with increased lifespan (137). Females of longer-lived lines
exhibited greater realized immunity in the face of challenge with
P. carotovorum, B. bassiana, E. faecalis, and DCV than controls
(137). Modulation of Toll components had varying effects on
male and female lifespan: knockdown of the negative regulator
cactus had a significantly reducing effect on lifespan, especially
in males, whereas Toll and spz knockdown enhanced lifespan
in both sexes (137). Dif knockdown had opposing outcomes
between the sexes, with females experiencing a slight extension
to lifespan (137). However, in two other studies, Dif mutants
exhibited enhanced lifespan, in the context of intrinsically short-
lived background lines (50, 140). Given the sex-specificity of Toll
pathway gene expression seen in young flies (23), it is perhaps
unsurprising that responses to such modulations are dimorphic.

Age-related systemic inflammation, for example, high basal
levels of AMPs and ROS, has been assumed to negatively
impact lifespan. This is supported by studies in which AMPs,
or Rel-family transcription factors controlling their expression,
have been manipulated. Both systemic and fat body-specific
overexpression of relish negatively affected male lifespan to
a greater extent than that of females, and relish male
mutants were marginally longer-lived than females (39). The
selective knockdown of relish at mid-life stages in the fat
body, however, significantly extended lifespan in males (39).
Global overexpression of attacin A, cecropin A1, defensin, and
metchnikowin had significantly deleterious effects on lifespan
of both sexes, with overexpression of defensin having a
greater impact on males (39), reminiscent of the increase
in defensin expression in aged males (139). This potentially
illustrates age-related immunopathology, where the tempering
of hyperactivated immune pathways at mid-late life stages is

protective. Intriguingly, clean injury of the cuticle has been
shown to extend lifespan in males only, suggesting that a non-
lethal wound initiates a response that has a hormetic effect
that is particularly effective in males (141). The mechanism
for this is unknown, but it is tempting to speculate that it
could initiate an anti-inflammatory state through induction of
immune regulators.

Immunosenescence
Relatively few studies have looked at immune function in both
sexes over aging, particularly from a mechanistic standpoint.
While survival following B. bassiana decreases over aging in
both sexes (140), systemic and cuticular inoculate challenge
with the entomopathogenic fungus was reduced in aged females
compared to young, while males succumbed only to cuticle
inoculation, exhibiting a reduction solely in barrier integrity
(114). Age negatively affected the ability to survive an oral
P. carotovorum challenge in males compared to females,
despite their comparatively superior maintenance of intestinal
barrier integrity (24). In addition, aged males fared worse in
response to systemic E. coli (142), P. aeruginosa, and Bacillus
thuringiensis (22) challenges. The studies described above do
not investigate the mechanisms underpinning these age-related
immune dimorphisms, nor indeed the tissue(s) responsible,
except via route of infection (24, 114). In a study investigating
the effects of age on hemocyte function, hemocyte numbers
were shown to decrease selectively in females over aging (21),
supported by a recent study that only examined females (143);
although both sexes maintained ex vivo phagocytic capacity
over age (21). In contrast, a recent study found no effect of
age on hemocyte number (22). It is clear that the mechanistic
underpinnings of sex-by-age interactions in efficacy of immune
responses and autoinflammation are undefined, but could be
hugely informative to our understanding of sex differences in
age-related pathology and lifespan.

EVOLUTION OF DIMORPHISM THROUGH
NATURAL SELECTION

Males and females can have different life histories, which implies
that they are exposed to different evolutionary pressures. Because
the sexes share a genome, these different pressures can lead to
sexual antagonism, which can potentially be resolved through
the evolution of sex-specific regulation leading to phenotypic
dimorphism. We explore this in the section below with reference
to the immune system in Drosophila.

One possible driver of natural selection on dimorphism is
unequal exposure to parasites in males and females. Males
and females may differ in the habitats they occupy, their
activity times, or their nutritional needs, for example. Males and
females thus occupy separate niches and are potentially exposed
to different parasites. Parasites can exert different selection
pressures on males and females: the extent to which they do
will depend on the extent of ecological divergence between
the sexes. Knowledge of the ecology of wild Drosophila being
relatively limited, it is difficult to define precisely which behaviors
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could cause such sex-specific selection. Females lay their eggs in
rotting fruits, where they are necessarily exposed to a microbe-
rich environment. Whether males spend less time in these
environments is not known. Lab studies have indicated that male
and female Drosophila do not have the same optimal diet, and in
diet choice experiments, make different nutritional selections in
accordance with their role in reproduction (144–146). Males and
females could potentially make different diet choices in the wild,
and thus be exposed to different parasites.

A second possible driver of natural selection on dimorphism
comes from the fact that the immune system allows resistance
to parasites but also represents a cost: it requires a significant
investment in terms of resources, and the activation of immune
defenses can cause “collateral” damage [e.g., autoimmune
reactions (147)]. From this it is predicted that hosts will evolve
toward an immune response of intermediate intensity, and not
toward a maximum response (148). In other words, hosts evolve
within a framework of constraints corresponding to an evolving
trade-off. But the terms of this trade-off are not necessarily the
same for both sexes: Hamilton and Zuk proposed that the links
between investment in immunity and life history traits are sex-
specific (149). Under this assumption, it can be predicted that
the optimal investment in immunity is not the same in males
and females, and could even be antagonistic (150). This scenario
is supported by evidence in Drosophila that both resistance and
tolerance can be sexually antagonistic (46), that expression of
immune genes is sexually dimorphic (27), and that the genetic
architecture of many traits, including immunity, differ between
males and females in Drosophila (151–153). This is supported by
mutation accumulation experiments indicating that deleterious
mutations do not have the same costs in both sexes (154–
156). Although the accumulation of spontaneous mutations in
Drosophila has not yet been shown to have a sexually dimorphic
cost on the immune response (46), it does appear have a
sex-specific effect on fitness (156). If autosomal determination
of immune traits are not clear-cut, the fact that Drosophila
immune genes can be X- and Y-linked (40, 41, 157) is sufficient
to expect that genetic structure can affect immune system
evolution in a sex-specific manner. First, the Y chromosome
is, by definition, strictly under selection in males and has been
demonstrated to influence the immune response (41, 157). For
example, only males that had a Y-chromosome introduced from
a single wild population differed in their ability to defend against
S. marcescens (41). Second, since fathers do not pass an X-
chromosome to their sons, evolution by sexual selection acting
on males would be much slower for traits largely influenced
by the X chromosome than would selection on autosomally
determined traits, and X-linked sexually antagonistic traits would
more freely affect sexual dimorphism (158). Supporting this is
the demonstration of X-linked variation in immune response
phenotypes in Drosophila, including bacterial load and immune
gene expression, in a set of 168 X-chromosome extraction lines
(40). Many of the associations of genetic variation with immune
phenotype acted in a sex-specific or sexually antagonistic manner,
supporting the theory that sexually antagonistic variation may
be more easily maintained on the X chromosome, and this can
impact dimorphism (158).

Sexual Selection and Evolution of
Dimorphism: The Hypothesis of the
Susceptible Male
Sexual selection is that which operates on the ability to mate
successfully. Two traits that generally evolve in parallel in
each sex under the effect of sexual selection are choice by
females and the ornaments of males. Ornaments are expensive
secondary sexual characteristics that evolve as a result of the
selection made by the choice of females. A difficulty with
this principle is that females can only choose males based
on a trait that demonstrates their vigor if that trait remains
variable. For sexual selection to occur, therefore, a continuous
source of heritable genetic variation must be present in the
population. This source of variation prevents genes for vigor
from fixation and the character of choice to be only affected by
non-heritable environmental factors. Parasites of all kinds offer
such selective variation in value because they can evolve quickly
and dynamically with their hosts (149, 159). It is on this basis that
the famous hypothesis of William (Bill) Hamilton and Marlène
Zuk was born. They proposed that parasite selection imposes
the evolution of female choice for infection-resistant partners,
which in turn favors the evolution of sexual dimorphism in
hosts. Thus, as they observed in birds, a negative correlation
between ornaments and parasitic load can be found in males
(149). Such correlation between expensive ornamental traits
and immunity may be present in Drosophila. One of the most
clearly dimorphic characteristics in Drosophila is the color of the
cuticle, which is darker in males than in females. The process
of darkening the cuticle requires the production of eumelanin,
which is also involved in the encapsulation of parasites. This
dual role suggests that coloration and immunity are two related
characteristics (103, 160). Furthermore, as mentioned above,
melanin is produced from dopamine, a neurotransmitter also
known to be involved in aggression behavior between males
(161), male courtship for females (162) and female receptivity
(163). Dopamine and melanin production are thus located at
a metabolic crossroads establishing a link between secondary
sexual characteristics, mating behavior, and immunity. Other
visible, dimorphic characteristics in D. melanogaster include
bristle number (abdominal and sternopleural), and the presence
of sex combs, specialized leg bristles in males which aid
copulation. Surprisingly, these traits have not been used, to
our knowledge, to study sexual selection, despite being very
clearly exposed to females. A recent study reported that flies
with a mutation in the yellow gene, which encodes a protein
involved in the synthesis of eumelanin, fail at mating because
insufficient melanization renders their sex combs non-functional
for grasping and mounting females during copulation (164).
Furthermore, determination of bristle number in males is
connected to the process of melanization (165). This link
is confirmed by genetic analyses that have shown that Ddc,
an enzyme essential for dopamine synthesis, has a role in
pigmentation (166), and also in the determination of the number
of bristles (165). Interestingly, Ddc is expressed differentially in
males and females, as expected, but its expression is modulated
during a bacterial infection [see RNA-seq data for “Ddc” in
(23)] (167). A mutation in the ddc gene could therefore have an
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impact on both male ornamentation and response to infection.
Female Drosophila are able to choose their mates on the basis
of phenotypic traits (168, 169), and while evolutionary theory
offers several different explanations for female mate choice,
most include the evolution of heritable attractive features in
males (170). The Drosophila Genetic Reference Panel (i.e., DGRP
lines) show that natural populations indeed bear variation at
several positions in the coding sequence of Ddc (see genome
browser at genome.ucsc.edu). In Drosophila, it is unclear how
male ornaments (or attractive traits) trade-off with investment
in immunity, but one could speculate that factors required
for both cuticle patterning and immune responses could be
limiting. Since males have a high selection pressure for access to
mating (25), they might still invest in their costly ornament (e.g.,
cuticle, bristles) to the detriment of their immunity. In any case,
the hypothesis that investment in immune melanization may
affect secondary sexual traits, such as bristles/combs, remains to
be tested.

Hamilton and Zuk have shown that the dimorphism of
investment in immunity increases with the intensity of sexual
selection. This observation can be explained by a direct negative
effect of reproductive traits on those of immunity: this is the so-
called immunocompetence handicap hypothesis (171). It occurs
because the immune system can interact directly with the
hormonal system in relation to sexual dimorphism (172, 173).
Increased production of hormones may thus have a benefit for
secondary sexuality in males (e.g., ornaments, or competitive
traits such asmuscle mass) but a deleterious effect on the immune
response. Since males have a high selection pressure for access to
mating, they might invest in competitive traits to the detriment
of their immunity (174). The handicap hypothesis implies that
the resource allocation trade-offs between immunity and other
characteristics related to selective value are not the same formales
and females (148, 175, 176), and leads to the conclusion that
males should invest fewer resources in immunity than females. In
males, the benefits of increased mating success through greater
investment in sexually selected traits (or in costly behaviors)
should offset the costs of disease-related reduction in lifespan.
Females, on the other hand, would invest more in immunity than
males to maximize their breeding time. This prediction extends
Bateman’s principle to immunity (25, 177). In Drosophila, the
interaction between immunity and hormones has clearly been
identified (32, 33, 93, 178). For example, females produce juvenile
hormone (JH) to lay fertilized eggs, and JH directly suppresses
the immune response (93). JH affects the antimicrobial peptide
(AMP) Drosomycin most strongly, which responds mainly to
G+ bacterial infection via the Toll-mediated immune pathway
(32). Interestingly, as discussed above, a greater susceptibility of
females to some infections is mediated by Toll signaling. This
is suggestive that the sex-specific investment of females in egg
production via the production of JH has a cost on their immune
system, leading to sexual dimorphism in response to certain
infections (23).

The previous hypotheses suggest that one sex should be
superior than the other while facing infection. Although these
hypotheses predict dimorphism per se, they cannot explain the
inconsistencies in the direction it takes. Alternatively, sex-specific

differences may arise from sex-specific changes in reproductive
behavior in response to variation in fitness-limiting resources
availability, and not from an intrinsically superior immune
function (179). In such a case, sex-specific responses would be
condition dependent. In D. melanogaster, availability of sexually
receptive females is an important fitness-limiting resource.
While males adjust their level of courtship in response to
this resource, increased sexual activity reduces their immune
functions, likely because of a reallocation of feeding time into
the search for a mate (180). Food availability is, of course, a
major fitness-limiting resource. When males and females were
kept separate and given ad libitum food, immune function was
maximized in both sexes and there was no sexual dimorphism
in clearance of a benign infection with E. coli. However, when
the fitness-limiting resources were scarce there was a sex-specific
bias (179). When food was limited, females exhibited poorer
clearance of the infection than males and, conversely, males
with high sexual activity, despite abundant food, performed
less well than females. Thus, if there are many reasons for
dimorphism to evolve, there are many reasons for its direction to
be plastic.

Obstacles to the Evolution of Dimorphism
If different selection pressures are applied to two subpopulations,
there is every indication that they will evolve in different ways
(181). However, males and females of a species are not sub-
populations like any other, since their genomes must recombine
in each generation. In each generation, therefore, a gene that
is advantageous when expressed in a female can be transmitted
from a mother to her son, in whom the expression of this
gene could be disadvantageous. In summary, the evolution of
a beneficial trait for one sex can be a burden for the other
sex (182). In the previous example, the genetic origin of this
burden is antagonistic pleiotropy: an allele beneficial to one sex
has a negative effect on the other. This sexual conflict, highly
investigated in Drosophila, can occur at one locus (intra-local
conflict: a mutation at one locus has a positive effect for one
sex but negative for the other) or at several (interlocal conflict:
a mutation at one locus has a negative effect on one sex and
selects a mutation at another locus that reduces the effectiveness
of the first mutation) (26). This sexual antagonism could mean
that the advantage obtained by one sex is exactly offset by
the burden the other sex suffers. In other words, antagonistic
pleiotropy could prevent the evolution of dimorphism. In a
less extreme situation, if dimorphism manages to evolve despite
pleiotropy, it is conceivable that neither sex will be able to
adapt optimally.

Dimorphism as a Resolution of Sexual
Conflict
It is also possible that selection may favor sex-specific regulatory
genes that result in an advantageous allele in females being
expressed only in females (183). Pleiotropy would then be
eliminated, and dimorphism could evolve without constraint. To
our knowledge, there is no experimental work that has studied
the role of this sexual conflict in the evolution of sex-specific
regulation of the response to infections in Drosophila.
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One Pathogen, One Rule
It is usually impossible to predict, for a given infectious disease,
which sex will suffer the most. For example, in mammals,
it is often said that males are the “susceptible” sex (184).
Men are indeed more susceptible to leishmaniasis, malaria,
or bilharzia; but they are more resistant to toxoplasmosis,
amebiasis, and giardiasis (12, 185, 186). The complexity increases
considering that pathogens can adapt specifically to the sex-
specific characteristics of the host. If a parasite is more often
exposed to one sex, it is expected to adapt to that sex it encounters
most frequently (187). Under such a scenario, even in the absence
of sexual dimorphism in response to the infection, the parasite
is expected to behave differently and to consequently induce
a dimorphism in symptoms or virulence (15, 188). Attempts
to generalize, through meta-analyses, are not consistent: they
sometimes even imply that there is no real dimorphism (189).
If the selection pressures applied to both sexes vary considerably
from one parasite to another, we cannot exclude that the effects
of the different parasites cancel each other out, so that the average
selection pressures applied by all parasites ultimately lead to
the same investment in immunity in males and females. Given
that different parasites require different methods of control, this
seems an unlikely outcome; instead, varied selection pressures,
applied differently to each sex, requiring distinct responses, could
result in a complex array of context-dependent dimorphisms.
In Drosophila, reported directions of dimorphism in infection
outcome are condition- and pathogen-dependent (Table 1), thus
it seems inappropriate to propose a generality on the direction
of immune sexual dimorphism (23, 40). However, even if the
direction is difficult to predict, it is rare that dimorphism does
not occur: in that sense, dimorphism in infection outcome seems
to be the rule and not the exception.

Environmental Effects on Immune
Dimorphism
As if pathogen-dependent dimorphism was not complex enough,
infection almost certainly interacts with environmental factors
to shape immune dimorphisms. Nutrition modifies the response
to infection (190, 191), and where choice is offered, flies
will change their feeding preferences in response to infection
(192). Diet choices have been empirically demonstrated to
increase fitness in insects (193), e.g., in a “true fruit fly”
(Bactrocera tryoni)—S. marcescens infection model, where
infection-induced selection of increased carbohydrate-to-protein
ratio led to better survival (194). Baseline and infection-induced
sex differences in nutrient preference may influence outcome
to infection, as may dimorphic responses to macronutrients.
For example, in a D. melanogaster—Vibrio cholerae infection
model, increased levels of glucose selectively reduced lifespan
in females, but delayed their succumbing to infection, whereas
it had no effect on males (195), suggesting that while females
suffer long-term consequences of chronically elevated insulin
signaling, acute responses to pathogenic challenge, at least
by V. cholerae, are enhanced by high dietary glucose (195).
Nutrient-sensing pathways are known to regulate immune
responses, among many other physiological responses to the

environment (196), and perturbations in these pathways are
shown to affect sex-differential gene expression in Drosophila,
including expression of immune, defense, and stress response
genes (146, 197). Thus, it is essential that we view diet,
nutrient-sensing, and sex as interacting factors when considering
immune dimorphisms.

Other biotic (density, competition), and abiotic (temperature,
humidity) factors are likely to play into dimorphic outcomes
to immune challenge. Indeed, in the wild, environmental
inputs come as combined, covariate packages, and it is in the
context of these combined inputs that Drosophila has evolved.
Higher-order, systemic signaling pathways such as IIS/mTOR
may integrate these inputs to produce phenotypically plastic
responses that match current environmental states (196).
IIS/mTOR has been empirically demonstrated to regulate
immune responses in D. melanogaster (198, 199), suggesting
that IIS/mTOR could represent a nexus for integrating sex
differences in responses to environmental variation, including
immunity. Among the biotic factors that have gained much
attention recently is the microbiome. Diet, of course, contributes
to modeling the gut microbiome and its sex-specificity might
shape dimorphic bacterial communities. Thus, microbiota-
infection interactions (200, 201) have the potential to shape
immune dimorphisms. Microbiome sex differences have
been demonstrated in Drosophila (132), and likely interact
with both dietary choices (133) and responses to infection,
therefore it follows that a full understanding of immune
dimorphisms cannot be achieved without considering natural
poly-microbial interactions.

The Ubiquitous Endosymbiont Wolbachia

as a Troublemaker
Wolbachia is a ubiquitous endosymbiont predominantly
transmitted by mothers to their offspring. This reproductive
parasite is known to affect immune characteristics such as
phenoloxidase (PO) activity (202), phagocytosis by hemocytes
(203), and to affect the outcome of other infections, such as
providing resistance to viral infection (204). While not the
focus of the study, Martins et al. (60) showed that the level of
resistance provided by Wolbachia status depends on the sex of
the host. Furthermore, Wolbachia protects males more than
females against enteric infection by the bacterium P. aeruginosa
(205). For these reasons and because it is so common, we
expect that Wolbachia infection could influence the direction
of immune dimorphism, and even impact the evolution of the
dimorphism itself.

Regulation of Immune Dimorphism
Immune dimorphisms in D. melanogaster arise from a shared
genome, and must be a product of sex-specific gene regulation,
however, this is not yet well-resolved. At the top of the
regulatory hierarchy are genomic differences, namely sex
chromosome karyotype. As we have discussed, there are clear
X- and Y-linked effects on immunity in D. melanogaster.
Downstream of karyotype, dimorphisms can be regulated by
the sex determination pathway, a cascade of splicing factors
regulated by X chromosome number that ultimately lead to
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the expression of sex-specific transcription factors (206). This
pathway has recently been shown to have “non-canonical”
routes of signaling in some tissues (125), and importantly,
to exert profound effects on physiology in larvae and adults
beyond its purely developmental role (20). However, the potential
regulation of immunity by sex-specific pathways is as yet
untested [but see (125) for transcriptional regulation in the
intestinal epithelium].

Drosophila, and insects in general, demonstrate that sexual
dimorphism can occur without the presence of sex steroids per se.
Notably, insects produce the steroid hormones ecdysone and
juvenile hormone (JH), and as discussed, these are important
regulators of immune function. It is possible that hormonal
and genetic regulation interact; for example, via sex differences
in hormone production or receptor expression (207). One
potential source for dimorphic hormone production are the
gonads, which may exert influences on immune responses in
closely opposed organs, as has recently been demonstrated for
regulation of intestinal carbohydrate metabolism by the testes
(124). The tractability for genetic manipulation of sex-specific
transcription factors and hormone production/reception is a
major advantage to using D. melanogaster to better understand
sex-specific regulation of immune function.

CONCLUSION

We understand relatively little about immune dimorphisms in
Drosophila, despite their apparent prevalence and magnitude.
A real gap in our knowledge is the physiological and
mechanistic underpinnings of the male-female differences in
survival to infection that have been widely reported. We
know almost nothing about how sex dimorphisms are shaped
over the life course, including during development, or the
influence of dimorphic immunity on aging and vice versa.
Dimorphismsmay arise from fixed differences in gene expression
and tissue function, or from more plastic mechanisms that
respond to environmental variables, or both. One thing is
certain: the interaction between sex and immunity is complex.
Complexity does not lend itself to generalities, and therefore
we must be cautious in stating rules about male or female
responses. Sex is clearly an essential factor that must be
considered in the interpretation of data arising from studies
into immunity, where the ideal approach is to include both
sexes wherever possible. We argue that not only will including
both sexes in studies of Drosophila immunity give a more
complete picture, it will offer valuable insight into fundamental
mechanisms underpinning innate immunity and responses to
infection, and an understanding of the factors that drive
dimorphisms to arise.
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