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Abstract: In species with separate
sexes, parasite prevalence and dis-
ease expression is often different
between males and females. This
effect has mainly been attributed
to sex differences in host traits,
such as immune response. Here, we
make the case for how properties
of the parasites themselves can
also matter. Specifically, we sug-
gest that differences between host
sexes in many different traits, such
as morphology and hormone lev-
els, can impose selection on para-
sites. This selection can eventually
lead to parasite adaptations specif-
ic to the host sex more commonly
encountered, or to differential ex-
pression of parasite traits depend-
ing on which host sex they find
themselves in. Parasites adapted to
the sex of the host in this way can
contribute to differences between
males and females in disease prev-
alence and expression. Considering
those possibilities can help shed
light on host–parasite interactions,
and impact epidemiological and
medical science.

Introduction

Males and females are sexually dimor-

phic because of divergent selection in

many traits, including morphology, phys-

iology, life history, and behavior. In fact,

the most extreme differences described

within species, such as body size, are often

those between sexes and, typically, sex

differences explain most of the phenotypic

variation between adults in a sexual popu-

lation. In populations of sexual species,

parasite prevalence, disease symptoms,

and virulence also often differ between

males and females (see review in [1],

recent examples in [2–5]). This effect of

host sex, recorded even in humans, has

mainly been attributed to sex-specific

differences in immune response, hor-

mones, and resource allocation [1,6–11].

For example, the male hormone negative-

ly affects the efficiency of the immune

system. Other sex-dependent characteris-

tics, however, including morphological,

physiological, behavioral, dietary, and life

history traits, may also contribute to these

observations.

Parasite populations are expected to

have adapted to the characteristics of their

most common host type [12]. If a parasite

population evolves mainly in one sex (e.g.,

those transmitted among extremely sex-

biased host populations), sex-specific char-

acteristics may impact how the parasite

adapts to that host (Table 1). Therefore,

without considering the sex of the host in

which the parasite primarily evolved, it is

difficult to disentangle whether sex-biased

parasitism is the result of differences

among hosts only, or if adaptation of

parasites contributed to these characteris-

tics as well.

Here, we argue that the sex of the host

can impose selection on the parasite itself,

which in turn will contribute to variation

in disease prevalence and expression

among male and female hosts. This

hypothesis could be tested in systems

where hosts and parasites can be used in

experimental infections and where para-

site isolates can be obtained from both

host sexes. But, to our knowledge, such

experiments have never been done, prob-

ably because it is assumed that the

prevalence and severity of disease found

in different host sexes are caused by the

characteristics of the host alone. We

propose that parasite adaptation to specific

host sexes can lead to three different

evolutionary outcomes for the parasite: 1)

parasites that adapt differently to each sex,

leading to dimorphism in the parasite

population, here called ‘‘host sex–specific

dimorphism’’, 2) parasites that specialize

on only one sex: ‘‘single sex specializa-

tion’’, and 3) parasites with phenotypically

plastic traits, whose expression is depen-

dent on the sex of their host: ‘‘plastic sex-

specific disease expression’’.

We will begin by explaining in more

detail these three evolutionary scenarios

using a simple experimental design to

help distinguish them (Box 1, Figure 1).

The conditions under which these sce-

narios may evolve differ strongly. We also

attempt to pinpoint those conditions that

are likely to play a crucial role for the

evolution of sex-specific parasite adapta-

tion and lead either to monomorphic

parasite populations or to dimorphic

parasite populations (Figure 2). Then,

we discuss how host demographic prop-

erties, notably host sex ratio and social

structure, can influence the extent to

which the parasite evolves. Specifically,

differences between host sexes can affect

the likelihood and extent of transmission

of parasites and disease among host sexes

and determine how they change the

selective environments for the parasites.

We conclude by considering the implica-

tions of host sex–specific adaptation for

studies for ecology and evolutionary

biology but also for applied subjects such

as medicine, veterinary medicine, and

agriculture. An explicit consideration of

these possibilities will help us understand

the commonly observed differences in the

distribution of infectious diseases among

different sexes.

Essays articulate a specific perspective on a topic of
broad interest to scientists.
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Three Paths to Adaptation

Host Sex–Specific Dimorphism
Male and female hosts may represent

very different environments to which

parasites adapt specifically. This is analo-

gous to local adaptation, where resident

genotypes in a specific environment are,

on average, fitter than genotypes originat-

ing from other environments [13]. Local

adaptation implies antagonistic pleiotropy,

whereby the selected alleles have opposite

effects on fitness in different environ-

ments—in other words, there is a trade-

off in performance between the environ-

ments [14]. One can equally view the two

host sexes as two different environments.

The trade-off is expected to result in

parasite origin 6 host sex interactions for

parasite fitness (Figure 1C). In that con-

text, the evolution of parasite divergence

in a sexual host depends mainly on two

parameters, the extent to which the host is

sexually dimorphic (difference between en-

vironments) and the likelihood of a parasite

encountering the opposite sex—the alterna-

tive environment—during transmission

(Figure 2). The latter is conceptually similar

to gene flow between environments. If

parasite populations are structured by host

sex, the parasite populations may have the

opportunity to adapt to the conditions

specific to the host sex they encounter most

often. Thus, the parasite would evolve a

host sex–specific dimorphism (Figure 2A).

Single Sex Specialization
We discuss here two ways by which a

parasite may become adapted to one sex

only. In extreme cases, one host sex

may be so rare (e.g., males in cyclically

parthenogenetic species, such as aphids,

are absent for large parts of the year) that

the parasite rarely encounters them

(Figure 2B). In this case, parasites sampled

from the rare host would actually be

adapted to the other sex (the common

sex), and parasites from both origins would

be fitter in the common host sex

(Figure 1B). Alternatively, the parasite

could adapt to a host trait that is found

in only one host sex, such as primary or

secondary sexual traits. The parasite

populations may adapt only to this sex,

even if the likelihood of encountering the

other sex is high (Figure 2C). In this case,

parasites sampled in the host sex to which

they are not adapted (if this is possible),

would perform better in the opposite host

sex (Figure 1B).

Plastic Sex-Specific Disease
Expression

Phenotypic plasticity, a property whereby

the same genotype translates into distinct

phenotypes depending on the environment,

is a common way for organisms to deal with

fluctuating environments [15]. Parasites

facing distinct male and female host envi-

ronments might have evolved plasticity in

relation to those environments and be able

to express host sex–specific traits accord-

ingly. Following Scheiner [16], the plastic

expression of a trait is favored when 1)

variability among environments is high, 2)

environments are equally abundant, 3)

the strength of selection is equal in both

environments, 4) the environmental cue

determining the phenotype is highly corre-

lated with the environment of selection, and

5) the cost of plasticity, which is the cost of

maintaining the genetic and cellular ma-

chinery necessary to be plastic, is compen-

sated by its advantage. If these conditions

are met, phenotypic plasticity is expected to

evolve (Figure 2D); otherwise, a single

generalist phenotype will be favored. If

there is plasticity, then parasites originating

from different host sexes will be equally fit

when tested in the same sex environment

(Figure 1A).

Host Population Structure and
Parasite Transmission

The evolution of sex-specific parasite

adaptation is affected by the likelihood of

parasites being transmitted within or be-

tween host sexes (Figure 2). This depends

strongly on the host species and the

ecological circumstances (Table 2). Here,

we focus mainly on cases where the

likelihood of encountering a host of the

opposite sex is low. For example, males and

females are not always equally abundant

and, therefore, parasite transmission will

occur among the most common sex. Biased

sex ratios are often observed in natural

populations [17–20], and are even an

intrinsic characteristic of certain species,

for example, the abundance of females in

cyclically parthenogenetic species (e.g.,

aphids, cladocera, rotifers), in sequential

hermaphrodite species [21], and in many

haplodiploid species such as ants, bees,

wasps, and mites. Parasites infecting social

bees, wasps, and ants will face mostly

female workers and will only rarely en-

counter males. For bumble bees, it has been

shown that foraging female workers are

more infected by tracheal mites than

foraging males [22]. Female-biased sex

ratios can also result from sex-ratio distort-

ers such as Wolbachia bacteria, which infect

at least 20% of all insect species [23].

In species where sex ratios are unbiased,

social structures can lead to spatial segrega-

tion of males and females and, consequent-

ly, their parasites. Males and females may

live in mixed social groups only for limited

periods of their life cycle, such as those with

a matriarchal social organization. In Afri-

can elephants (Loxodonta africana), for exam-

ple, mature males leave the group to be

either solitary or to spend time with other

males [24]. Sexual segregation is also

common in ungulates ([25]; Table 2) such

as the American bison, where bulls and

Table 1. Examples of sexually dimorphic traits that might influence parasite evolution.

Sexually Dimorphic Traits Implications for Parasites Examples

Sex-specific tissue - Parasite adaptation to the tissue only present in one host sex
(e.g., ovarian parasites of fish [49] and testicular parasites of fish [50]).

- Primary sexual traits.

Sex-specific properties of tissue - Parasite adaptation to the specific host properties of a tissue existing
in both host sexes. This may results in specific parasite communities
adapted to the sex-specific properties (e.g., different microbial
community on hands of different sexes [68]).

- Different skin properties (e.g., men sweating more
than women [69]).
- Differences in diet with implication on digestive
apparatus (e.g., American bison males eat relatively
more C4 plants and females more C3 plants [40]).

Sex-specific need/metabolism - Parasite adaptation to resources available in each sex. - Males with wings and females wingless (e.g., Velvet
ants [70] might have different physiology and different
needs.
- Differences in diet for different needs (e.g., male capucin
monkeys eating more animals than females [41]).

doi:10.1371/journal.pbio.1001271.t001
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cows are not in contact for 11 months of the

year [26]. The purpose of such segregation

may enable females to avoid contact with

parasitized males [27], supporting our

suggestion that parasite populations may

remain isolated within a host sex.

Host Sexual Dimorphism and
Parasite Transmission

Sex-specific host traits may also affect the

rate at which hosts of different sexes

encounter parasites and vice versa (Table 2).

For example, body size, which is often

dimorphic, may be why parasites in mam-

mals more often infect the generally larger

males than females [28]. In many taxa, males

are larger than females (e.g., many birds

[29]), but the reverse is not rare in some

groups (e.g., insects [30]) and can be extreme

as is the case with dwarf males, such as

barnacles [31,32], potentially reversing or

exaggerating the pattern of infection bias

observed in mammals. Certain types of sex-

biased behaviors are also linked to an

increased risk of exposure to parasites. For

example, in mice and other mammals, male-

specific sniffing of urine and feces used to

assess social hierarchy can increase contact

with pathogens [33,34]. In domestic cats, the

feline immunodeficiency virus (FIV), a virus

mainly transmitted via bites, occurs twice as

much in males because of sex differences in

their social behavior. Males also have a

higher propensity to bite each other [35],

opening up another potential route for

increased transmission between males. Con-

versely, parasites associated with nests (e.g.,

fleas and ticks) will generally encounter

mature females or juveniles (which, typically,

have no pronounced sex differences) more

often than they will encounter male hosts.

Other sexually dimorphic behaviors that

might explain differences in exposure to

parasites (Table 2) include foraging (e.g.,

cormorants [36], squirrel monkeys [37], and

blue-footed and brown boobies [38]), diet

(e.g., Fore people’s cannibalistic practices

[39], the American bison [40], and capuchin

monkeys [41]), and dispersal (reviewed in

[42]). However, the effects of these differ-

ences on the evolution of parasites and on the

likelihood of parasite adaptation to specific

host sex remains to be explored.

Susceptibility of a host to parasite

infection will depend on whether the

parasite can overcome the host immune

system and how well it can grow in the

host. By affecting exposure and suscepti-

bility, differences between male and fe-

male hosts in morphology and life history

traits can influence the likelihood that a

parasite encounters one or the other host

sex and, therefore, the probability that

it evolves host sex–specific adaptations

(Figure 2). Differential susceptibility due

to host immunity has been proposed many

times in vertebrates and is attributed to the

interaction between endocrine and im-

mune systems [43]. Sex hormones also

regulate innate and acquired immunity

[44,45], and, as mentioned at the outset,

testosterone interacts with the immune

system, presumably explaining the higher

parasite susceptibility of male rodents

[46,47] and lizards [48]. Whether a

parasite can infect a host also depends on

host physiology and on the resources that

the parasite can exploit. In extreme cases,

where the parasite infects a primary or

secondary sexual trait (e.g., fish ovary

parasites [49] and fish testis parasites

[50]), only one sex is a suitable host.

Males and females also differ in the type

and concentrations of hormones and

metabolites (Tables 1 and 2) such as body

fat, which can be an important resource

for parasites. In insects, for example, the

Box 1. How to Test Whether a Parasite Is Specifically Adapted to
the Sex of Its Host

There are many examples of differences in parasite prevalence and/or infection
symptoms between male and female hosts. Such differences, however, are
typically interpreted in terms of the characteristics of host individuals rather than
that of the parasites. For example, there may be differences because the male or
female host provides a more or less suitable environment for the parasite.
Distinguishing this from a parasite that has traits that are specifically adapted to
one sex is challenging. Here, we propose an experimental approach to highlight
parasite adaptations to host sex. This follows the same type of design used to test
for local adaptation in various ecological systems [14], but, instead of comparing
distinct geographical populations, we compare parasite populations isolated
from either male or female hosts.

Using a full factorial design, you can expose female and male hosts (‘‘test
environment’’) to parasites sampled from either female or male hosts (‘‘origin
environment’’), and measure parasite performance, via a variety of phenotypic
traits. This can be done in any system where parasite harvest and infection are
possible in both host sexes. The way parasite performance is measured will
depend on the specific biological system and can include traits such as infectivity,
virulence, survival, and production of parasite transmission stages. Figure 1
illustrates the three main types of possible outcomes. First, if parasite
performance is not affected by the test or the origin environments (Figure 1A),
you might conclude that parasites sampled in males and females do not
correspond to divergent populations (or have not diverged for that specific
measurement of performance). Parasites might either express the same traits in
both host sexes (i.e., no sex-specific adaptation), or might have evolved traits that
are expressed plastically, depending on which sex they infect (we refer to this as
‘‘plastic sex-specific disease expression’’ in the main text). Second, if parasite
performance differs between test environments but not between origin
environments (Figure 1B), it also indicates that the parasite populations sampled
in males and females did not diverge. But in this case, the parasite is either
specialized on one host sex (single-sex specialization), and/or one host sex is a
more suitable ‘‘habitat’’ than the other. To distinguish between no sex-specific
adaptation and plastic sex-specific disease expression in the first case, or between
single-sex specialization and a sex bias in host suitability in the second, you would
need to investigate parasitic traits that you suspected might represent specific
adaptations. It would be necessary to determine whether and how these also
differ in relation to the test and the origin environment. Finally, when parasite
performance depends on a combination of test and origin environments (i.e.,
when there is an interaction effect between the two factors; Figure 1C) we can
conclude that the parasites sampled in male and female hosts have diverged and
are sex-specifically adapted.

In addition to these quantitative analyses of parasite phenotypic traits, a
population genetic approach can provide further information. Population genetic
methods can be used to estimate the extent of genetic divergence between
parasites collected from male versus female hosts [79] and to find candidate loci
under selection. Population genetic methods have been used, for example, to
establish differences between HIV viral populations sampled in humans reporting
on distinct subtypes associated with male homosexual versus heterosexual
transmission [80].
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Figure 2. Parasite evolution in relation to host sexual dimorphism and likelihood of encountering the other host sex. In red and blue
are parameter combinations, which lead to monomorphic or dimorphic parasite populations, respectively. The higher the degree of host sexual
dimorphism and the lower the probability of encountering the same host sex, the higher the likelihood is that a parasite will adapt specifically to its
common host sex (A). When one host is different from the other, and so rare that a parasite cannot persist in it (e.g., males in a facultative sexual
species like many rotifers, cladocerans, and aphids), then the parasite species may specialize entirely on the common sex (B). When one host is very
different from the other in a trait important for the parasite (e.g., a primary sexual trait), then, disregarding the rate at which the opposite sex is
encountered, the parasite may specialize entirely on the more suitable host (C). When males and females are very different from the parasite’s point
of view and the parasite encounters both sexes equally often (D), the parasite might evolve phenotypic plasticity (e.g., Wolbachia).
doi:10.1371/journal.pbio.1001271.g002

Figure 1. Possible outcomes of experimental tests with parasites sampled and tested in male and female hosts.
doi:10.1371/journal.pbio.1001271.g001
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females are larger [30] and often have a

higher proportion of body fat. Space and

nutrition are key components of the host’s

carrying capacity for any parasite popula-

tion and so will have an impact on the

number of generations a parasite popula-

tion can have within the same host

individual. Longer host lifespan can also

increase the number of possible parasite

generations, which increases the opportu-

nity that the parasite has to adapt to its

host’s characteristics [51]. Sex differences

in lifespan are quite common and can be

extreme (Table 2).

Evidence for Parasite Sex-
Specific Adaptation

The examples above suggest that male

and female hosts can represent different

selective environments, with distinct chal-

lenges but also different opportunities for

parasite growth. In addition, parasites

might not be equally likely to encounter

both sexes and may even be genetically

isolated within host sexes. That parasites

have the potential to form two sub-

populations adapted to the sexes they

infect the most appears reasonable. How-

ever, there are very few documented

examples of parasite adaptation to host

sex, and to our knowledge no example of a

host sex–specific dimorphism has been

described. There are a few recent empir-

ical tested examples, however, of parasites

actively choosing to infect the sex they

most commonly encounter and, where

they have the highest fitness, these make a

compelling case for single-sex specializa-

tion of parasites (Box 2). This scarcity of

evidence in general may reflect a lack of

studies where this has been explicitly

investigated.

Implications of Parasite Sex-
Specific Adaptation

Host sex–specific parasite divergence

has implications for both host and parasite

populations and for the dynamics of the

interactions between them. Between-sex

differences can represent a challenge for

parasites, making it difficult to fully adapt

to both sexes in well mixed populations.

There are occasions when parasites en-

counter a high proportion of the host sex

that they are not adapted to. For example,

in organisms with cyclical parthenogenesis

(e.g., Daphnia, aphids, rotifers), males may

be absent for most of the time but

common during a particular period of

the year and/or under certain environ-

mental conditions. Likewise, in many

ungulates, males and females that live

apart come together during the breeding

season. This can have evolutionary conse-

quences for the parasites that could either

reduce or reinforce the adaptation. For the

former, sex-specific adaptations may de-

crease or be eliminated when generalist

parasites are favored over sex-adapted

ones. However, reinforcement may occur

if there is selection for parasite traits that

enable the parasites to discriminate be-

tween host sexes, and thus help avoid the

wrong host type (e.g., active host choice),

or, in invertebrates, sex manipulations

(e.g., feminization of male crabs by

Sacculina, see Box 2). Finally, encountering

the ‘‘wrong’’ host may also lead to the

expression of unintentional disease symp-

toms that are actually detrimental to the

parasite [52]. In extreme situations, para-

site populations adapted to one or the

other host sex might eventually become

isolated from each other (dimorphic par-

asite population, Figure 2) and form

different parasite species, each specialized

on one host sex (monomorphic parasite

population, Figure 2B and 2C).

Parasite sex-specific adaptations and the

possibility for host sex change may be

exploited by the host itself. For example, in

Table 2. Examples of host sex differences that might influence parasite evolution.

Host Sex Difference Examples and Their Implications for Parasites

Exposure Differences in
visited areas

- Male spadefoot toads spend many nights in water while females go only once for a few hours, which results in
males being the common hosts for aquatic parasites such Pseudodiplorchis americanus [71].
- Cormorant males and females forage in different places, which results in parasites of one sex more likely to infect
more this particular sex [36].

Differences in behavior
increasing parasite
encounter risk

- Male mammals sniff urine and feces for establishment of social hierarchy, which results in increasing the contact
with pathogens [33,34] and male-to-male transmission.
- House finch males prefer contact with less aggressive males while females have no preference, which results in
increasing the likelihood of infection between males when the less aggressive males are more heavily infected [72].

Differences in host
availability

- Biased sex ratio in cyclically parthenogenetic species and in many haplodiploid species such as ants, bees, wasps,
and mites may result in parasites more likely to infect only one host sex.

Difference in social
structures

- Spatial segregation of male and female hosts such as most ungulates, which results in the segregation of the
parasite populations they carry.

Differences in host
body size

- Males are larger than females (e.g., mandrills, elephants, sea lions). Male Bonellia viridis (annelids) are drastically
smaller than females (see dwarf males [31]). Strong sex size dimorphism increases the likelihood to encounter the
larger host sex (e.g., mammals [28]).

Susceptibility Differences in
immunocompetence

- Interaction between endocrine and immune system [44–48], which results in males and females differing in
ability to fight off parasites [43] and parasites having a greater opportunity to spread within male hosts (e.g., twice
for striped plateau lizards [48]).

‘‘Haploid-susceptibility
hypothesis’’

- In haplodiploid species, females are diploid, males are haploid. The ‘‘haploid-susceptibility hypothesis’’ predicts
that the haploid males are more susceptible [73] and might be the host type the most commonly successfully
infected.

Development Differences in lifespan - Females living longer than males (e.g., male hymenoptera live for days, certain females for years [74], male
marsupials of the species Antechinus stuartii die shortly after the breeding season, while females live for years [75]),
which may result in more parasite generations within the same female host and a higher probability for female
hosts to get infected during their lifetime.

Differences in
development

- In bees (Apis cerana), larvae development is longer in drones (males) compared to workers. Varroa destructor
mites have a developmental time matching those of drones. Mites on worker host larvae cannot reproduce
[76,77]. Varroa mites can actively choose the drone brood cells [78].

doi:10.1371/journal.pbio.1001271.t002
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the sequentially hermaphroditic fish Tha-

lassoma bifasciatum, when the hosts are

females they can be infected with the

parasite Kudoa ovivora, which is specialized

on exploiting only the host ovaries

(Figure 2C). Interestingly, when infected,

the hosts are able to change sex, removing

the only resource the parasite can exploit

and bringing it to a dead end [53].

Box 2. Examples of Parasites That Are Adapted to One Sex of the Host

The idea that parasite populations can adapt to only one of the sexes of their host or diverge to adapt to both host sexes is
novel, and sex differences in infection success and/or symptoms have not been interpreted (or analyzed) from this perspective.
While, to our knowledge, no example of a host sex–specific dimorphism has been described as such, some known parasite
adaptations may correspond to single-sex specializations or plastic sex-specific disease expression (as described in the main
text). Here, we refer to some examples that illustrate different aspects of parasite adaptation to host sex. There are many
parasites that exploit either exclusively or predominantly only one sex of their hosts. Some of these have evolved mechanisms
for discriminating between the sexes, thus ensuring they only infect suitable individuals. Others have evolved mechanisms for
manipulating the infected host so as to recover particular sex-specific traits necessary for parasite proliferation and/or
transmission.

Discriminating the Sex of the Host

Myxozoa belonging to the genera Kudoa are myxosporean parasites of fish that comprise around 70 species [81], of which all
but one infect multiple hosts tissues. The only exception is the species Kudoa ovivora, which specifically infects the host’s
ovaries [49]. Curiously, to our knowledge, this parasite is the only species of the genus that infects exclusively sequential
hermaphrodites where fish develop first as female and then become male (e.g., labrids and scarids). Such fish populations are
known to have female-biased sex ratios [21], which could explain that this parasite adapted specifically to the characteristics of
female hosts. The relevance of host sex ratio for parasite single-sex specialization is further discussed in the main text.

The ectoparasitic mite Spinturnix andegavinus (Figure 3B) is mainly transmitted among ‘‘maternity clusters’’ of its host, the bat
Myotis daubentoni (Figure 3A). Experimental studies have shown that these mites are capable of growing only on female hosts
[82], which necessarily means that they are specifically adapted to this host type. The same studies also revealed that the
parasite actively chooses to attach to females [82], and that selection for being on the correct host was sufficiently strong to
favor mechanisms (possibly via sense organs) for the parasite to discriminate between host sexes. Many endo- and
ectoparasites are known to be able to actively choose between host species [83–88], and even between host individuals of the
same species [89]. It might be possible that host sex discrimination is more widespread than is commonly believed.

The mite Varroa destructor, an ectoparasite of bees and a great problem in apiculture, has a life cycle that includes a phase on
adult bees, where the parasite spreads, and a phase on the developing host individuals inside the brood cells, where it
reproduces [90]. In its original host, the Eastern honey bee Apis cerana, the mite reproduces exclusively in the presumptive
drone (male bee) cells [76,77,91]. Mites carried into the brood cells by the adult nursing workers will stay in the brood cell if the
larva within that cell is a presumptive drone, but not if it is a developing worker or queen (being repelled by a substance in the
royal jelly fed to these larvae [92]). Brood cells with worker larvae are typically much less frequently visited by nursing adults
[93], and this might have been the original trigger of the sex bias in parasite infection. In the more recent host Apis mellifera,
where the parasite can reproduce in both drone and worker larvae, the difference in nurse care can partly explain that drone
cells are around 10-fold more infected than worker cells [93,94].

Manipulating the Sex of the Host

When a parasite is highly specialized on the characteristics of one host sex, infection of the ‘‘wrong’’ host type can carry high
fitness costs; for example, if one sex-specific aspect of host anatomy is necessary for parasite growth or transmission. For sex-
specialized parasites exposed to both host sexes, the cost of infecting the less suitable host type might be overcome by either a
plastic response (i.e., the parasite will express different traits in different host types) or the manipulation of the host (i.e., the
parasite will manipulate the traits of the host of the ‘‘wrong’’ sex). Host-sex manipulation has been described, for example, for
parasitic barnacles of the genus Sacculina, which infect and sterilize crabs [95]. The parasite grows in the place where the host
eggs are incubated (i.e., underside of the rear thorax), and spreads when female hosts perform egg-laying behavior. When these
parasites infect male crabs, they induce the feminization of both morphology and behavior of infected males and, as a
consequence, the parasites can be transmitted. The mechanism by which this feminization is induced is not well understood,
but presumably involves the secretion of hormones by parasites [96]. If this secretion occurs inside male hosts but not inside
female hosts, one can talk about plasticity in parasite traits relative to host sex. If, on the other hand, the secretion occurs in
both infected females and males, one can talk about single-sex specialization of the parasite in the sense that this parasitic trait
is adaptive only in males.

A typical example of phenotypically plastic response to host sex is that of bacteria from the large group of the Rickettsia (e.g.,
Wolbachia [97]) and sex ratio–distorting Microsporidia [98]. These parasites are well known and widespread examples of
maternally transmitted parasites that are sex-specifically adapted. These endosymbionts are transmitted transovarially to male
and female progeny, but have different behaviors depending on the host sex they infect. For example, Wolbachia may induce
feminization of genetically male hosts or specifically kill infected males to favor infected females of the same brood [97].
Wolbachia is widespread in insects and is a compelling illustration of the importance of sex-specific parasite adaptations. It is
likely that many other cytoplasmic parasites show sex-specific adaptations to increase their transmission.
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Parasite adaptation to host sex can have

important implications for host–parasite

coevolution. We have proposed that the

sex of the host can drive parasite sex-

specific adaptation when parasite subpop-

ulations evolve mainly in one host sex. For

the host, however, selection on one sex

only can be impaired by intra-locus sexual

conflict [54,55] when alleles that confer

parasite resistance or tolerance in the

affected sex decrease fitness of the other

sex. The expression of traits associated

with parasite resistance may thus become

sex limited.

Host sex–specific adaptation of one

parasite might also lead to sex-specific

adaptation of other associated parasites.

This may be the case, for example, for

endoparasites transmitted by host sex–

biased ectoparasitic vectors. In Box 2, we

list examples of ectoparasites infecting

predominantly or exclusively one host

sex (e.g., the mites Spinturnix andegavinus

that infect female bats of the species

Myotis daubentoni). Such ectoparasites are

likely to be vectors of different endopar-

asites, and, if the vector reproduces

exclusively in one host sex, the vector-

borne pathogens will also more often

infect that host sex and may be selected

in that environment.

Host sex is a key factor in studies in

medicine and disease control and parasite

sex-specific adaptation is a strong argu-

ment that both sexes need to be included

equally in clinical trials, currently an

important concern in medicine [56–60].

In humans, there are well documented

host sex differences in parasite prevalence

and infection symptoms, as well as pre-

vention and treatment of infection. The

immune system of men and women reacts

differently to vaccines [61]. This difference

can be vaccine strain–specific (e.g., men

exhibited a higher antibody response than

women for yellow fever vaccines from two

of three different virus strains [62]). While

this is undoubtedly related to intrinsic

differences between men and women, if

parasites then behave differently in male

versus female hosts, either because of

genetic divergence related to sex adapta-

tion or because of phenotypic plasticity,

then parasites in females and males might

not be targeted by the same antibodies/

drugs. Whatever the cause, failure to

immunize/cure one fraction of the host

population might create a reservoir for the

parasites, and immunizing/curing one or

the other sex can also have distinct effects

on disease prevalence. Studies on the

yellow-necked mouse show that treatment

of male hosts reduced parasite prevalence

in both sexes, but treatment of females

reduced parasite prevalence only in fe-

males [63]. Even in the absence of sex-

biased infection, there is a disproportion-

ate contribution of male yellow-necked

mice to parasite transmission [64].

Figure 3. Photos of the ectoparasitic mite Spinturnix andegavinus (B) and of its host bat Myotis daubentoni (A) to which the parasite is
sex specifically adapted. Image credit: Manuel Ruedi and Philippe Christe.
doi:10.1371/journal.pbio.1001271.g003
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Prospects

Different types of host heterogeneity

affect the evolution of infectious diseases

[65–67]. Here, we have argued that the

sex of the host is likely to be another

important factor in parasite evolution.

Documented host-sex differences in para-

site prevalence or effect (see [1]) support

the idea that the probability that parasites

spread (within and between hosts) is not

always the same with regard to host sex.

These differences are generally attributed

to intrinsic characteristics of the host

individuals [1,6–9]. The observed sex-

biased disease prevalence and/or severity

might indeed be due to the host’s intrinsic

heterogeneity, but might also be the result

of the parasite having adapted to infect

and grow in specific host sexes. Unequal

host susceptibility and sex-specific adapta-

tion by the parasite are not mutually

exclusive explanations for sex-biased prev-

alence, and, in fact, must work together.

The likelihood and extent of adaptation to

a specific sex depends on many factors.

These include characteristics of the host

populations or host individuals that deter-

mine how different the male and female

environments are, and how often the

parasite experiences them. We discussed

examples of each of these to illustrate how

they can impact parasite evolution and

lead to the divergence and specialization

of parasite populations in different host

sexes. Parasite characteristics, particularly

the mode of transmission, will also have an

impact on the likelihood of divergence

between parasite populations in male and

female hosts. Therefore, transmission

mechanisms will affect sex-specific adap-

tation. For example, sexually transmitted

parasites will typically have to deal with

both host sexes and are less likely to adapt

to any sex (represented by the left hand

side of the x-axis in the Figure 2). Mater-

nally transmitted parasites will be more

likely to be adapted to females. To

conclude, the sex bias of disease preva-

lence and severity is of a major current

concern in parasitological studies, notably

in medical trials [56–60]. We propose that

by taking the possibility of parasite adap-

tation that is specific to the sex of the host

into account, we will gain a better

understanding of host–parasite dynamics

and thus the possibility of parasite control

and more generally of sex-related disease

expression.
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