
*For correspondence: david.

duneau@gmail.com (DD); nicolas.

buchon@cornell.edu (NB)

†These authors contributed

equally to this work

Present address: ‡Case Western

Reserve University School of

Medicine, Cleveland, United

States

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 20

Received: 02 May 2017

Accepted: 11 October 2017

Published: 12 October 2017

Reviewing editor: Bruno

Lemaı̂tre, Ecole Polytechnique

Fédérale de Lausanne,

Switzerland

Copyright Duneau et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Stochastic variation in the initial phase of
bacterial infection predicts the probability
of survival in D. melanogaster
David Duneau1,2*, Jean-Baptiste Ferdy2, Jonathan Revah1,3, Hannah Kondolf1‡,
Gerardo A Ortiz1, Brian P Lazzaro1,3†, Nicolas Buchon1,3†*

1Department of Entomology, Cornell University, Ithaca, United States; 2 Laboratoire
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Abstract A central problem in infection biology is understanding why two individuals exposed

to identical infections have different outcomes. We have developed an experimental model where

genetically identical, co-housed Drosophila given identical systemic infections experience different

outcomes, with some individuals succumbing to acute infection while others control the pathogen

as an asymptomatic persistent infection. We found that differences in bacterial burden at the time

of death did not explain the two outcomes of infection. Inter-individual variation in survival stems

from variation in within-host bacterial growth, which is determined by the immune response. We

developed a model that captures bacterial growth dynamics and identifies key factors that predict

the infection outcome: the rate of bacterial proliferation and the time required for the host to

establish an effective immunological control. Our results provide a framework for studying the

individual host-pathogen parameters governing the progression of infection and lead ultimately to

life or death.

DOI: https://doi.org/10.7554/eLife.28298.001

Introduction
Two hosts exposed to apparently identical infections may have dramatically different outcomes. In

one case, the host may experience only mild symptoms and recover easily, while in another the host

may suffer devastating illness or even death. In many pathogenic infections, only a fraction of the

infected hosts die from the infection or carry a high pathogen burden, while other hosts may

strongly limit parasite proliferation. For example, mosquitoes infected with malaria experience high

and low pathogen load (Molina-Cruz et al., 2008), rats infected with Enterococcus faecalis experi-

ence bimodal pathogen burden (Frank et al., 2015), and even the abundance of gut microbes

exhibits bimodal variation (Lahti et al., 2014). Genetically identical hosts may still experience drasti-

cally different infection outcomes (e.g. clonal population of Daphnia magna infected by one strain of

bacteria [Duneau et al., 2012]). These observations suggest that the process of infection could itself

be intrinsically variable. While such differences can sometimes stem from genetic or environmental

variation among hosts, in other cases the difference in outcome appears to be more arbitrary or sto-

chastic, and the relative contributions of genetic, environmental and random individual variation

remain unclear.

Variation in within-host disease processes can affect pathogen evolution by modulating the

within-host evolutionary dynamic during the course of the infection (Alizon et al., 2011;

Mideo et al., 2011). Theory predicts that variation in traits such as bacterial growth rate or host

response time to an infection can affect the outcome of the infection and thus the epidemiology of
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the disease (Alizon et al., 2011; Fenton et al., 2006). To better understand the selection pressures

that shape host-parasite interactions, it is important to empirically open the ‘within-host black box’

and characterize the different phases of an infection and to define the evolutionarily relevant param-

eters in the host and parasite (Alizon et al., 2013).

Drosophila is a prime model to study host-microbe interactions (Buchon et al., 2014). Drosophila

relies on both humoral and cellular responses to fight infection (Lemaitre and Hoffmann, 2007).

The humoral response consists of the secretion of antimicrobial peptides (AMPs) into the hemo-

lymph (insect blood) and the activation of the melanization cascade, both of which limit microbial

proliferation. The cellular responses include encapsulation of foreign bodies and phagocytosis by

dedicated immune cells. Antimicrobial peptides are constitutively expressed in a restricted set of

barrier tissues at low levels but are massively upregulated in the fat body in response to infection.

Two major signaling pathways, the Toll and Imd pathways, drive the induction of AMPs in the fat

body. Importantly, we and other groups have observed strong inter-individual variation in the out-

come of Drosophila infected with a wide range of bacteria and viruses (Chambers et al., 2014;

Clemmons et al., 2015; Ferreira et al., 2014; Howick and Lazzaro, 2014; Kutzer and Armitage,

2016), which suggests that Drosophila is a good model to study the stochastic nature of infection.

In the present work, we aim to identify key parameters of the intra-host dynamic that underlie the

inter-individual variation in the outcome of infection. We first demonstrate that infection of Drosoph-

ila melanogaster by a series of bacterial pathogens leads to highly variable infection outcomes.

Notably, infections with the Gram-negative Providencia rettgeri and the Gram-positive Enterococcus

faecalis result in one of two binary outcomes: some individuals die with a high pathogen burden,

whereas others survive indefinitely with fairly asymptomatic and low-burden persistent infections.

Different individuals of the same age and genotype may experience either outcome, even when co-

housed in the same rearing vial. We find that bacterial burden upon host death did not correlate

with the time post-injection at which death occurs, and that the lethal burden varies across bacterial

species and strains. Surviving flies sustain a much lower pathogen burden, which also varies across

bacterial species and can depend on the initial inoculum and on the immune response. Using a vari-

ety of experimental manipulations, we determined that inter-individual variation occurs as a conse-

quence of the interplay between bacterial growth rate and the activation of the host immune

eLife digest Sick individuals do not all respond to an infection in the same way. One individual

may experience mild symptoms and recover easily, while another may suffer devastating illness or

even death. A number of factors are often assumed to account for these differences, including the

sex, age and genes of the individuals, and differences in the environments the individuals have been

exposed to. However, random variations in how an individual’s immune system interacts with the

infection could also play an important role in recovery.

Duneau et al. have now studied how genetically identical fruit flies who were raised in the same

environment respond to different bacterial infections. This enabled them to develop a mathematical

model that describes how a bacterial infection develops in an individual. In an initial phase, the

bacteria proliferate freely. If the immune defenses activate in time to control the infection, the

number of bacteria in the fly decreases to a constant level and the infection enters a long-term, or

chronic, phase. The sooner this happens the more likely it is that the fly will survive. If the immune

control happens too late, the infection enters a terminal phase and the fly will die once the number

of bacteria increases to a certain level.

The model therefore reveals that the precise time at which the immune system takes control of

the bacterial population – termed the “Time to Control” – determines the outcome of the infection.

Duneau et al. confirmed this by injecting bacteria into identical flies. A small variation in the Time to

Control was sometimes the difference between a fly living or dying. Understanding what controls

this apparently random variation is key to understanding infection and potentially developing more

efficient treatments for a wide range of diseases – not just those caused by bacteria, but also those

caused by viruses and parasites, like HIV and malaria.

DOI: https://doi.org/10.7554/eLife.28298.002
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response. We developed a theoretical model that describes the probabilistic nature of bacterial

growth and thus host survival based on three key factors: the net rate of bacterial proliferation (m),

the timing of effective immunological control (Tc), and an inferred threshold pathogen density (ntip)

that must be reached to enable the bacteria to switch to a lethally acute infection instead of a chron-

ically persistent one. Our model predicts infection dynamics accurately and suggests that inter-host

variation in survival must originate in the ability of the pathogen to reach the ntip threshold before

effective immune control is established. We observe empirically that the quantitative activation of

the immune response varies among individual hosts, suggesting that inter-individual stochasticity

early in infection might lead to differences in the probability of ultimate survival. Altogether, our

results illustrate the mechanisms underlying the variable nature of infection outcome and provide a

framework for studying the distinct parameters that govern the progression of infection and lead

ultimately to life or death.

Results

The outcome of infection for individual hosts is highly variable
Infection with different pathogens produces dramatically different outcomes that range from the cer-

tain death of all host individuals to the nearly certain survival of all host individuals. In order to define

the range of outcomes, we infected male Drosophila melanogaster with a panel of seven bacteria by

injection of a controlled dose into the abdominal cavity (Figure 1A). Infection with Providencia alcali-

faciens and Serratia marcescens Db11 was lethal to the flies in a short timeframe, killing all individu-

als within one day of infection. Conversely, nearly all individuals survived infection with E. coli and

Erwinia carotovora Ecc15 (formally known as Pectinobacterium carotovorum carotovorum 15)

(Figure 1A). Infections with different natural pathogens of Drosophila including P. rettgeri, E. faeca-

lis, P. burhodogranariea resulted in the death of only a fraction of the infected population

(Figure 1A). It is commonly assumed that inter-individual differences can stem from genetic differen-

ces or environmental variation, including nutrition, gut microbes or rearing conditions. We therefore

controlled for these sources of variation by infecting same-aged, genetically identical hosts (isogenic

lines of the Drosophila Genome Resource Panel and w1118), reared in a common environment with a

controlled microbiota and given experimentally identical infections (Figure 1B). Even under experi-

mentally identical conditions, we continued to see dual outcomes of infection. In addition, the rela-

tive probability of the infection achieving either outcome varied among genotypes. Inter-individual

variation could also stem from small variation in fly handling at the time of infection. For instance,

differences in exposure to the CO2 used for anesthesia during the experiments could influence the

probability of death upon infection (Helenius et al., 2009). However, we found that even 15 min of

exposure to CO2 prior to or after injection did not affect the chance of survival relative to 2 min of

exposure (Figure 1—figure supplement 1). These results demonstrate stochastic variation in the

outcome of infection (life or death) even among genetically identical individuals, although host and

bacterial genotype combine to determine the probability of surviving infection.

One could reasonably predict that individuals that survive their infections may do so by having

cleared the infecting pathogen. To test this, we quantified bacterial loads in individual flies that were

still alive seven days after injection with E. coli, E. carotovora, E. faecalis, and P. rettgeri. At this

point, mortality curves had plateaued and little to no further death was observed (Figure 1A). We

found that none of the bacteria had been entirely cleared from the host and nearly all individual

hosts still had measurable loads of bacteria (Figure 1C). In the case of the most benign pathogens,

which did not lead to the death of any host individuals, a few host individuals either cleared the

infection or sustained loads below our detection threshold of 10 bacteria per fly (~22% for E. coli

and ~8% for E. carotovora). However, most surviving hosts developed persistent, chronic infections.

In addition, the bacterial load sustained during the persistent phase of infection was constant but

distinct for each bacterium (e.g., Figure 1—figure supplement 2A). We termed this parameter the

‘Set Point Bacterial Load’ (SPBL), in analogy to the commonly used ‘Set Point Viral Load’ for chronic

viral infections (Fraser et al., 2014). Interestingly the SPBL for E. coli and E. carotovora were signifi-

cantly lower than those from E. faecalis and P. rettgeri infections, which also differed between each

other (Figure 1C). The SPBL for E. coli and E. carotovora, our two least virulent bacteria, was a few

hundred bacteria per infected host. In contrast, the SPBL for pathogens of intermediate virulence,
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such as P. rettgeri and E. faecalis, centered around a few thousand bacteria, and no single fly ever

cleared the infection. In addition, we found the SPBL for P. rettgeri to be significantly different

among three D. melanogaster host genotypes (Figure 1C), increasing with the size of the initial inoc-

ulum (Figure 1—figure supplement 2B).

We next examined the individual hosts that died from their infections. In the case of P. rettgeri,

only a subset of infected hosts die. Mortality begins as soon as 16 hr post-injection and continues

over the course of a few days before survivorship plateaus (Figure 1A,B). We quantified the Bacterial

Load Upon Death (BLUD) by sampling individual flies within 30 min after their death, before the con-

founding effect of post-mortem bacterial proliferation. We compared those loads to pathogen bur-

dens of still-living individuals sampled from the population all along the course of infection

Figure 1. The outcome of infection ranges from 100% to 0% survival. (A) Canton S flies were injected with the same inoculum (OD600 = 1, ca. 30,000

bacteria) of different bacteria species. Providencia alcalifaciens (n = 29) and Serratia marcescens (n = 30) are lethal pathogens (green solid lines) and

killed 100% of the hosts in less than a day. E. coli (n = 21) and E. carotovora (n = 20) infection did not reduce host survival (blue dashed lines). P. rettgeri

(n = 44), P. burhodogranariea (n = 44) and E. faecalis (n = 30) infections led to intermediate outcomes (blue solid lines): some individuals died in the first

two days after infection while others survived. (B) Even for males of the isogenic lines of the Drosophila Genome Resource Panel and of w1118, same age

and reared in a common environment with a controlled microbiota, only a fraction of the hosts was killed by experimentally identical infections with P.

rettgeri. This fraction depended on the host genotype (Coxph: Line: df = 4, c2 = 19.23, p=0.0007, nRAL-584 = 20, nRAL-85 = 20, nRAL-707 = 20, nRAL-712 = 20,

nw1118 = 84). (C) Flies that survive infection are chronically infected with a constant bacterial load we termed Set-Point Bacterial Load (SPBL). Distinct

bacterial species differ in their SPBL (Kruskal-Wallis test: df = 3, c2 = 63.14, p=1.25e-13). Host genotype also impacts SPBL (Kruskal-Wallis test: df = 2,

c

2 = 6.63, p=0.03). The annotations above the violin plots reflect results of two-by-two Wilcoxon tests comparing medians: *p<0.05, ****p<0.0001 and

ns: p>0.05.

DOI: https://doi.org/10.7554/eLife.28298.003

The following source data and figure supplements are available for figure 1:

Source data 1. Data set for Figure 1.

DOI: https://doi.org/10.7554/eLife.28298.006

Source data 2. Data set for Figure 1—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.28298.007

Source data 3. Data set for Figure 1—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.28298.008

Figure supplement 1. The variability of outcome in infection is not due to variation in the time of exposure to CO2 before and after injection.

DOI: https://doi.org/10.7554/eLife.28298.004

Figure supplement 2. The chronic phase of infection is characterised by the Set Point Bacterial Load (SPBL).

DOI: https://doi.org/10.7554/eLife.28298.005
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Figure 2. Hosts die at a set bacterial burden, the BLUD, which varies with host and pathogen. (A) The bacterial load in flies within 30 min of death from

P. rettgeri infection is a constant and is higher than that of flies that did not die from the infection. This is true when comparing dead hosts to living

hosts regardless of duration of infection (i: df = 1, W = 963036, p=1.39e-252) and when dead individuals are compared to living individuals sampled

simultaneously (ii: df = 1, W = 140, p=0.0004). The stars above the violin plots reflect results of two-by-two Wilcoxon tests comparing medians:

Figure 2 continued on next page
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(Figure 2Ai) or at a unique time point where 5% of the population died at once (Figure 2Aii). The P.

rettgeri loads in recently-dead individuals were 223.4 ± 21.6 (mean ±sd) bacteria/fly, regardless of the

time post-injection at which the host died (Figure 2B and Figure 2—figure supplement 1A). These

loads were consistently 100-fold higher than those of living individuals (215.8 ± 23.8 bacteria/fly;

Figure 2A). The narrow range of bacterial load upon death and the fact that live flies carry fewer

bacteria than recently dead flies (Figure 2Aii) suggests that the BLUD is a lethal load and cannot be

sustained in living individuals. We found that there is a BLUD associated with every bacterium and

that the BLUD differed significantly between bacteria (Figure 2C), indicating that this threshold is a

property of the pathogen. Surprisingly, the BLUD did not reflect the time it took various pathogens

to kill the host. For example, the BLUD for S. marcescens, which killed wild-type flies within 8 hr of

injection, was 220.2 ± 20.7 bacteria/fly. This is lower than that of P. alcalifaciens (224.3 ± 20.5), which

killed within 24 hr, but higher than for S. aureus (218.1 ± 20.7), which killed within 28 hr (Figure 2C).

Because the BLUD varies across bacteria but is constant for a given bacterial strain in a given envi-

ronment, we propose that it provides a novel measure of bacterial pathogenicity or toxicity to the

host.

Reciprocally, we reasoned that the BLUD also represents a measure of host disease tolerance cor-

responding to the maximal bacterial load that can be sustained before the individual dies from the

infection. As a measure of disease tolerance, the BLUD might vary among hosts. We therefore next

measured both inter- and intra-specific variation in the BLUD after infection with P. rettgeri. We first

assessed the BLUD of P. rettgeri-infected flies belonging to four different Drosophila species (D.

sechellia, D. erecta, D. mojavensis and D. ananassae) and to four different D. melanogaster wild-

derived isogenic lines (RAL-714, RAL-359, RAL-138 and RAL-882). We found that the BLUD varied

significantly across Drosophila species (Figure 2D) and across different D. melanogaster genotypes

(Figure 2E). To our surprise, however, the BLUD did not depend on the initial inoculum starting the

infection (Figure 2—figure supplement 1B). We tested this by challenging wild-type D. mela-

nogaster lines with P. rettgeri infection at five different doses ranging from ~300 (OD600 = 0.01)

to ~150,000 (OD600 = 5) bacteria injected. Flies injected with higher doses died earlier than flies

injected with lower doses (Figure 2—figure supplement 1C–D) but BLUD did not correlate with the

dose injected (Figure 2—figure supplement 1B). These data affirm that hosts die at a lethal burden

that does not depend on their initial infection dose or on their time to death.

Having described the BLUD as a measure of disease tolerance, we sought to determine whether

the immune response, the main mechanism of bacterial elimination (i.e. resistance), affected the

BLUD. We did not detect significant differences in the BLUD between any of the immune-deficient

hosts and their corresponding wild-type genotypes (Figure 2F). This result supports the idea that

Figure 2 continued

***p<0.001. (B) For both Canton S (Spearman correlation test - S = 462763.5, r = �0.13, p=0.14) and Oregon R (Spearman correlation test -

S = 327036.4, r = 0.11, p=0.23), the time of host death did not correlate with the BLUD for P. rettgeri. (C) Different bacterial species can differ in BLUD

when infecting the same host genotype (Kruskal-Wallis test: df = 3, c2 = 92.14, p=3.45e-21). However, the average time to death for a given bacterial

species does not correlate with its average BLUD (Spearman correlation test: S = 12, r = 0.4, p-value=0.51). (D) The BLUD of P. rettgeri depends on host

species (Kruskal-Wallis test: df = 3, c2 = 39.59, p=1.29e-08). (E) The BLUD of P. rettgeri depends on host genotypes (Kruskal-Wallis test: df = 3,

c

2 = 23.438, p=3.27e-05). (F) The BLUD of P. rettgeri is not altered by removing components of the host immune system listed on the x-axis (linear

mixed model with lines as random factor with df = 4, Deviance = 7.24, p=0.12). Wildtype refers to the wildtype lines Canton S, Oregon R and w1118.

‘Imd’ refers to the double mutant loss-of-function PGRP-LC, PGRP-LE and the loss-of-function mutant Relish. ‘Toll’ refers to the spzrm7 mutant.

Phagocytosis refers to the progeny of the cross Hml-Gal4 >UAS bax. ‘Melanization’ refers to a line double mutant for two prophenoloxidase genes

(PPO1D, PPO2D). The annotations above each violin plot represent the result of the post hoc Dunn tests; treatments with the same letter are not

significantly different after FDR p-value correction. Error bars in C are standard deviation around the mean.

DOI: https://doi.org/10.7554/eLife.28298.009

The following source data and figure supplement are available for figure 2:

Source data 1. Data set for Figure 2.

DOI: https://doi.org/10.7554/eLife.28298.011

Source data 2. Data set for Figure 2—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.28298.012

Figure supplement 1. The BLUD is constant over time and does not depend on the initial dose.

DOI: https://doi.org/10.7554/eLife.28298.010
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the BLUD is an exclusive measure of tolerance and not resistance. Collectively, our results indicate

that bacterial infections of Drosophila result in binary outcomes. Either the host dies from acute

infection with a stereotypical bacterial burden that is independent of dose, the BLUD, or the host

survives but sustains a chronic infection at low and also stereotypical bacterial burden that does

depend on initial dose, the SPBL. These binary outcomes are general to D. melanogaster and are

observed in all wild-type host genotypes and species that we tested, although the relative propor-

tion of hosts entering either state may vary with pathogen identity and host genotype (Figure 1A

and B). Although the BLUD is a key parameter to describe bacterial virulence and host disease toler-

ance, it does not explain the observed inter-individual variation in the outcome of infection (death

versus chronic persistence).

The outcome of infection is predicted by inter-individual variation in
within-host bacterial proliferation
We have shown that individual hosts may either survive or die from their infections, and we hypothe-

sized that among-individual variation in survival might result from differences in bacterial growth

dynamics at early stages of infection. In order to test this hypothesis, we initiated an in-depth study

of bacterial growth in response to three categories of pathogens: those that quickly kill all infected

hosts, those that kill none, and those that kill only a fraction of the infected population. We mea-

sured the bacterial load in individual flies at regular one-hour intervals for the first 16 hr after injec-

tion (Figure 3). Upon infection with two avirulent bacteria, E. coli and E. carotovora, bacterial

burdens inside individual flies decreased soon after injection (Figure 3A), suggesting that these bac-

teria are controlled within a couple of hours by the host, even though they are not completely

cleared. After injection with bacteria that kill all infected hosts in few hours (P. alcalifaciens or S. mar-

cescens), the pathogen burdens increased monotonically until all individuals were dead (Figure 3B),

suggesting that the host fails to control the infection. The pattern was very different for pathogens

killing only a fraction of the infected host population: E. faecalis, P. burhodogranariea, P. rettgeri

(Figure 3C–E). For these, we found that bacteria proliferated homogenously in all individuals during

the early phase of infection (up to around 6–8 hr), but that subsequently two groups of hosts could

be distinguished. Hosts of one group carried high and increasing bacterial loads, and we hypothe-

sized that these individuals are fated to die. Hosts in the other group exhibited a smaller bacterial

load that stabilized over time, and we hypothesize that these are the individuals who will sustain

chronic infections. Remarkably, the in vivo proliferation of P. rettgeri in the early phase of infection is

equivalent to the rate of in vitro growth in LB medium (Figure 3—figure supplement 1), suggesting

that the bacteria are growing largely without constraint in this early phase. The same is true of the

always-lethal P. alcalifaciens and S. marcescens (Figure 3—figure supplement 1). Proliferation con-

tinues at this same rate in the host group with the higher bacterial load up until the BLUD is reached,

at which point the host dies. These results are consistent with the hypothesis that host variation in

the outcome of infection might stem from differences in the ability of the fly to control infection in

the early stage.

Although perhaps unlikely, one possible explanation for the observed data would be that a sub-

set of hosts infected with P. rettgeri, E. faecalis, P. burhodogranariea do not survive their infections

because a mutation that provides resistance to the host immune system occurs in the bacterial popu-

lation, allowing these bacteria to continue to grow instead of being controlled. If this were true, the

bacteria that kill the fly would have evolved hyper-virulence and be able to outcompete their wild-

type counterparts. Conversely, the flies that survive their infections might conceivably do so because

the bacteria infecting them sustained loss-of-virulence mutations. To test these hypotheses, we sam-

pled bacteria from flies bearing either low (i.e. close to the SPBL) or high bacterial load (i.e. close to

the BLUD; Figure 4Ai) at 12 hr post-injection and used them to infect new cohorts of flies. In both

cases, we found that bacteria isolated from infected hosts were as likely or more likely than the origi-

nal bacterial clone to kill new hosts, although we see no difference in mortality upon infection with

bacteria from high-load versus low-load flies (Figure 4Aii). These data collectively provide no evi-

dence that the probability of a host controlling or failing to control bacterial infection results from

heritable changes in the bacterial population during infection.
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Figure 3. The infection outcome depends on inter-individual variation in within-host bacterial proliferation. (A) For bacteria that do not kill any infected

hosts, bacterial loads decreased soon after the beginning of the infection. Grey dots on the x-axis represent individuals without detectable bacteria. (B)

For bacteria that quickly kill all infected hosts, bacterial loads continuously increased until all hosts were dead (black arrows). (C-D) For bacteria that kill

a fraction of infected individuals, an initial period of bacterial growth in each individual was followed by a period where individual flies diverged in their

loads. In these infections, two groups of individual hosts appeared. In the first group, bacteria continue to grow, while in the other, bacterial growth

was controlled. (E) The increase in inter-individual variation in bacterial load over time is also observed in fully isogenic populations (RAL-707 and RAL-

712). In all panels, each dot represents the bacterial load in a single fly, the solid line represent the standard Baranyi bacterial population growth fitted

on the white dots (see Materials and methods). The intensity of red in the dots represents the probability that hosts controlled the infection (i.e. the

denser the red is within a dot, the higher is the probability that this host controlled the infection), and whose pathogen burdens are better described by

an exponential decrease model (see Materials and methods). Measurements of bacterial load dynamics were taken from Canton S flies unless otherwise

stated. The numbers in each panel identify each infection and are subsequently used in Figure 6B and C. Green labels are bacteria that kill all the

hosts and blue labels are bacteria that establish persistent infection in surviving hosts.

DOI: https://doi.org/10.7554/eLife.28298.013

The following source data and figure supplement are available for figure 3:

Source data 1. Data set for Figure 3.

Figure 3 continued on next page
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The host immune response determines the seemingly stochastic switch
in bacterial growth
We next hypothesized that the host immune response might be primarily responsible for regulating

pathogen burden, and that variation among individual hosts in immune activity might determine

whether infections proceed to acute lethality or settle into chronic persistence. To test the hypothe-

sis that the existence of a binary outcome to infection depends on the immune system, we studied

P. rettgeri growth during an in vivo infection and the probability of death in hosts deficient for either

the cellular or humoral immune responses.

Engulfment by macrophage-like cells, called phagocytes, is considered the first line of immune

defense once the parasite is inside an insect. We thus tested whether phagocyte activity predicts

inter-individual variation in bacterial growth. We infected hosts in which phagocytes were genetically

ablated with P. rettgeri and compared them to infected control hosts (Figure 5A). Individual hosts

separated into high-load and low-load groups over the first 16 hr of infection both in the presence

and in the absence of phagocytes. We therefore concluded that phagocytosis is not a determinant

of the switch between lethal and persistent P. rettgeri infection under our experimental conditions.

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.28298.015

Source data 2. Data set for Figure 3—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.28298.016

Figure supplement 1. In vivo proliferation in the early phase of infection is equivalent to the rate of in vitro growth in LB medium.

DOI: https://doi.org/10.7554/eLife.28298.014

Figure 4. Early intra-host bacterial evolution does not explain the dual outcome of infection. Bacterial evolution

inside the fly does not explain the binary outcomes of infection. (A) Quantification of bacterial load to determine

bacterial populations killing the host (bacterial load close to the BLUD 12 hr post-injection, red dots) and bacterial

population controlled by the host (bacterial load close to the SPBL 12 hr post-injection, blue dots), (B) Survival of

Canton S flies injected with P. rettgeri from the stock used for the original injections, or recovered from flies in

which bacteria had been growing for 12 hr (see panel A). Bacteria recovered from experimental flies (dashed lines)

killed more hosts than the stock culture (solid line) (Coxph: df = 3, c2 = 8.28, p=0.01). However, there were no

differences in mortality caused by bacterial populations isolated from flies with high loads versus those isolated

from flies that had controlled bacterial growth (Coxph: df = 2, c2 = 0.07, p=0.78).

DOI: https://doi.org/10.7554/eLife.28298.017

The following source data is available for figure 4:

Source data 1. Data set for Figure 4.

DOI: https://doi.org/10.7554/eLife.28298.018
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We next investigated the contribution of the humoral response to inter-individual variation in bac-

terial control. Gram-negative bacteria are mainly controlled by the Imd pathway, a major regulator

of AMP production (Buchon et al., 2014). We tested whether flies deficient for the Imd pathway

(DreddEP142 mutant, Figure 5B) show inter-individual variation in P. rettgeri proliferation. No individ-

ual DreddEP142 mutant fly could control infection and all mutant hosts died with a high pathogen

burden (Figure 5B). This demonstrates that the Imd pathway is required to control P. rettgeri infec-

tion and shift the infection to a persistent state in a subset of hosts.

Figure 5. Role of the immune system in the infection dynamic. (A) Within-host P. rettgeri loads at different times post-injection for wild-type (Canton S)

flies and flies deficient in phagocytosis (Hml-Gal4 >UAS GFP; UAS-Bax, Gal80ts). Distinct groups of high-load and low-load flies appear even in

absence of phagocytosis. (B) All hosts infected by P. rettgeri suffer high pathogen load in the absence of an Imd-mediated immune response. In these

hosts (DreddEP142 mutants), P. rettgeri growth occurs at a rate similar to in vitro bacterial growth (modeled by a Baranyi model, black line). (C) We

monitored within-host P. rettgeri loads at different times post-injection for Toll deficient (spzrm7 mutants) and wild-type flies (Oregon R). Distinct groups

of high-load and low-load flies appear even in absence of the Toll-dependent immune response. (D) We monitored within-host E. faecalis loads at

different times post-injection for Toll-deficient (spzrm7 mutants) and wild-type flies (Oregon R). For this Gram-positive bacterium, despite receiving the

same initial inoculum (grey dots), bacterial load differed between mutant and wild-type flies by four hours post-injection (Welsh t-test, df = 22.57,

t = 13.01, p-value=5.6e-12). In absence of the Toll pathway (blue dots), all hosts suffered high pathogen burdens. In all panels, each dot represents the

bacterial load in a single fly. In Panels A-C, the solid line represent the standard Baranyi bacterial population growth fitted on the white dots (see

Materials and methods). The intensity of red in the dots represents the probability that hosts controlled the infection, and whose pathogen burdens are

better described by an exponential decrease model (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.28298.019

The following source data is available for figure 5:

Source data 1. Data set for Figure 5.

DOI: https://doi.org/10.7554/eLife.28298.020
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The Toll pathway provides the primary response against Gram-positive bacteria but can also be

activated by host damage and pathogen-derived virulence factors (El Chamy et al., 2008). We

infected Toll-deficient (spzrm7 mutants) and wild-type hosts with P. rettgeri and observed the emer-

gence of discrete high-load and low-load groups of flies of both genotypes during the first 16 hr of

infection (Figure 5C). This demonstrates that Toll-deficient flies are sometimes able to control P.

rettgeri infection. We next tested the role of the Toll pathway upon infection with a Gram-positive

bacterium, E. faecalis, which also results in either acute lethality or chronic persistence in wild-type

flies (Figure 3C). Without exception, flies deficient for the Toll pathway (spzrm7 mutants) failed to

control E. faecalis infection and all hosts died with high bacterial loads (Figure 5D). These data col-

lectively demonstrate that the specific and appropriate arm of the humoral immune response is criti-

cal for the control of bacterial infection and establishment of persistent infection.

Altogether, our data indicate that the capacity to control infection versus allowing it to proceed

to the lethal state is determined by the action of the specific and appropriate arm of the immune

response, but that the lethal pathogen burden is independent of immunity. This reinforces the idea

that the BLUD is a readout of disease tolerance, but that the probability of the ultimate outcome of

infection is mechanistically distinct and determined by host immunological control.

A mixture model to capture within-host bacterial growth dynamics
We have empirically demonstrated that even genetically identical hosts differ in their ability to con-

trol infection, which ultimately leads to binary outcomes of death at high pathogen burden or sur-

vival with chronically persistent infection. In order to quantitatively define how the kinetics of

bacterial proliferation and host response determine ultimate infection outcome, we developed a

model to estimate bacterial growth within each individual host (illustrated in Figure 6A). Our model

assumes that in the early phase of infection, the bacteria grow unchecked within the host at rate �.

Empirical support for this component of the model comes from the observation that bacteria prolif-

erate at the same rate as in in vitro culture over the first few hours of infection in a wild-type host

and until death in an immune deficient host (as shown in Figure 3—figure supplement 1). We

assume that there is a time post-injection where the immune response of an individual fly becomes

sufficiently active to restrict bacterial proliferation, which we term the ‘time to control’ (Tc), and we

define t�c as the average time to control of a given population. This is based on the empirical obser-

vation that an intact immune response is required for establishment of a persistent infection (see

Figure 5B) and that the timing of our observed divergence in host trajectories corresponds roughly

to the time at which the D. melanogaster humoral immune response begins to become active

(Lemaitre and Hoffmann, 2007). We also observed that infections that kill only a fraction of the

hosts reach a state where flies either have a high bacterial load, in which case they die, or a low bac-

terial load, in which case they survive. We model this divergence between the two types of bacterial

kinetics by hypothesizing a threshold bacterial number (ntip) that, if reached prior to control, results

deterministically in ultimate host death at high bacterial load (the BLUD).

By applying our model to the empirical data, we can obtain for each individual host a probability

corresponding to the likelihood that control is effective (see Figures 3 and 5, where white dots are

infections that are most likely uncontrolled while red dots are most likely to be controlled). This

probability is computed as the probability that bacterial load does reach ntip before control becomes

effective. Using this computation, we estimated the overall probability that an individual host con-

trols an infection by a given bacterium. We found that the estimated probability of control in our

model, which is obtained from the measurements of bacterial load in different flies at different times

along the infection (i.e. there was no repeated measurement on the host), correlates well with the

empirically observed proportion of hosts that are killed (Spearman rank correlation test: S = 3.02,

r = 0.97, p-value=8.17e-6; Figure 6B). This is both an indication that the model adequately describes

our data and a confirmation that the probability of death is determined by the early phase of infec-

tion as described by the model.

One parameter that our model allows to estimate from experimental data on early growth is the

average time to control (t�c; Figure 6C). We hypothesized that ‘priming’ the immune system prior to

infection should dramatically reduce this parameter and therefore yield much higher probability of

controlling the infection. To test that, we infected transgenic flies that had constitutive activation of

the Imd pathway with P. rettgeri and monitored bacterial growth. We found that bacterial loads in

hosts with an immune system that was genetically activated prior to infection began to decrease
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immediately after injection, demonstrating effective control at the moment of infection (t�cc0)

(Figure 7A). Surprisingly, however, the bacteria grew to acute lethality in a small proportion of indi-

viduals with constitutive Imd pathway activation (Figure 7A), suggesting that the Imd pathway alone

is not always sufficient to control P. rettgeri.

Figure 6. A generalized model of infection. (A) A schematic representation of a conceptual model for within-host bacterial growth dynamics that, upon

three phases, lead either to host survival or death. In a first early phase, the bacterial population grow exponentially without being controlled. Then, in

a second phase, some hosts start to control bacterial proliferation. In this resolution phase, inter-individual variation in the time to control (Tc), appears.

We hypothesize that if host immune defenses control bacterial multiplication before bacterial load exceeds a critical threshold called the ‘tipping

point’, then the host will survive infection and enters in a chronic phase, sustaining a persistent pathogen burden that we call the Set Point Bacterial

Load (SPBL). If the tipping point is reached before the host establishes effective control, the infection enters a terminal phase and the bacteria will

continue to proliferate until reaching a load that cannot be sustained by the host (the BLUD, or Bacterial Load Upon Death), at which point the host

dies. (B) Prediction of the proportion of infected individuals that control their infections. The probability of controlling infection is estimated by our

model based on early bacterial load measurements and correlates strongly with the proportion of hosts still alive when the mortality curve plateaued

(Spearman rank correlation test: S = 3.02, r = 0.97, p-value=8.17e-6). The oblique line represents a 100% correlation. Error bars on the x-axis represent

error of estimation by the model of the probability of controlling proliferation based on bootstrap analysis (1000 iterations). Error bars on the y-axis

represent the confidence interval of the proportion of surviving hosts at the time where the mortality curve plateaued. The numbers and colors in the

figure indicate the identity of the bacterium used in infection, and correspond to the numbers and identities in Figure 3. Green labels are bacteria that

kill all the hosts and blue labels are bacteria that establish persistent infection in surviving hosts. (C) Estimation of t�c from early growth dynamic of

different infections (Figure 3) with our statistical model. Red intervals are empirically estimated (see Figures 5D and 7B). Black error bars on the x-axis

represent error of estimation by the model of the t�c based on bootstrap analysis (1000 iterations).

DOI: https://doi.org/10.7554/eLife.28298.021

The following source data and figure supplement are available for figure 6:

Source data 1. Data set for Figure 6.

DOI: https://doi.org/10.7554/eLife.28298.023

Figure supplement 1. A simulation of the WHD model.

DOI: https://doi.org/10.7554/eLife.28298.022
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Figure 7. The time to effective control by the immune response determines the outcome of infection. (A) Bacterial load over time in hosts with pre-

activated immune systems (Gal80TS; daughterless-Gal4 > UAS Imd) and in the corresponding control flies (Gal80TS; daughterless-Gal4 > Canton s).

Early activation of immune response allows flies to start controlling bacterial growth immediately after the infection started. (B) Empirical determination

of t�c. For both Gram-negative bacteria tested, within-host bacterial proliferation was initially similar between lines (GLM with Gamma distribution of

error, Time x Line: df = 1, F = 0.4, p=0.53 for P. rettgeri up to 8 hr post-injection, and up to 2 hr for E. carotovora Time x Line: df = 1, F = 0.27, p=0.61),

and later was controlled in wild-type (Canton S) but not in Imd-deficient flies (RelishE20 mutants). (C) The antimicrobial peptide gene Diptericin

(measured relative to housekeeping gene Rpl32) in Canton S flies was strongly induced after injection of P. rettgeri. This can be seen in three replicate

pools of flies tested every two hours post-injection (left panel with red lines representing median values), as well as for eight individual flies sampled 4

hr post-injection (right panel). (D) Correlation between bacterial load in individual fly heads (correlated with bacterial load in the abdomen, see

Figure 7—figure supplement 1) and Diptericin expression in Canton S flies 8 hr post-injection with P. rettgeri. The lack of a significant correlation

(Spearman correlation test, S = 4225.9, r = 0.06, p=0.75) suggests that the activation of the immune system is independent of early bacterial load.

Dashed lines in panels A and B represent the connection between medians.

DOI: https://doi.org/10.7554/eLife.28298.024

The following source data and figure supplement are available for figure 7:

Source data 1. Data set for Figure 7.

DOI: https://doi.org/10.7554/eLife.28298.026

Source data 2. Data set for Figure 7—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.28298.027

Figure supplement 1. Correlation between the number of P. rettgeri in head and abdomen of the same fly (Spearman correlation test, S = 633.31,

r = 0.84, p=8.8e-09).

DOI: https://doi.org/10.7554/eLife.28298.025
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We compared the average time to control (t�c) estimated from the model with experimental meas-

urements of the time at which host immunity impacts bacterial load after infection with the same

bacteria. We quantified proliferation of E. carotovora and P. rettgeri in wild-type and Imd pathway

mutant hosts (Figure 7B) and the growth of E. faecalis in wild-type and Toll pathway mutant hosts

(Figure 5D), using the logic that bacterial loads should become measurably different between wild-

type and immune deficient flies soon after control by the immune response occurs in the wild-type

host. Using this method, we found that the effect of the immune response is detectable starting at 2

hr post-injection for E. carotovora, at 8 hr post-injection for P. rettgeri, and at 2 hr post-injection for

E. faecalis (Figures 7B and 5D). These empirical measurements of t�c ranges overlap with the confi-

dence intervals of t�c that our model predicts for these infections (Figure 6C).

We found variation in t�c across bacterial infections, and we next hypothesized that this variation,

because it impacts the probability of control (Pc), could partly determine the outcome of infection. In

our model, the probability of control also depends on parameters that determine early bacterial

growth. To analyze the contribution of t�c and bacterial growth rate to the outcome of infection, we

compared the likelihood (i.e. how well the model fits the data) of a complete model fitting the data

through the estimation of 11 parameter values for each type of infections to the likelihood of models

where some of the parameters are held constant for all infection types. For example, to estimate the

role of the parameter t�c, we compared likelihood of our full model, where each type of infection has

its own value of t�c, with a model fitting our data by estimating a common t�c value for all infection

types. A significantly better fit of the full model reveals a significant role of the parameter which was

held constant in the second model. We performed this analysis for all the parameters involved in

modeling the control of infection (Control model, i.e. t�c, Vc, ntip) or the parameters involved in

modeling early bacterial growth (Growth model, i.e. tlag, m, sb) to test their relative impact on how

accurately the model predicts survivorship (Table 2). We found that both sets of parameters involved

in modeling the control of infection and early bacterial growth both have a strong impact on ade-

quately predicting bacterial load (Table 2). We found that variation in survivorship is best explained

by variation in t�c when only bacteria displaying intermediate survival are considered (i.e. when

excluding E. coli, E. carotovora which have very low growth and mortality rates, and S. marcescens

and P. alcalifaciens which have high growth and mortality rates, see Figure 6B). Conversely, when all

bacteria were included in the analysis, differences in survivorship are best explained by differences in

early bacterial growth (Table 2). These results suggest that the probability of surviving infection is

affected by the average time at which control occurs (t�c), but that this effect can be masked by large

differences in growth rates (m).

Table 2. Effect of early growth (tlag, m and sb) and control (t�c, Vc and ntip) parameters on the capacity of the model to predict survival.

Log-likelihood is computed either on bacterial load data (i.e. on the data set we used to fit the model) or on survival data. In this latter

case, we used the probability of control predicted by the model as an offset in a binomial general linear model (glm) fitted to survival

data. This glm includes an intercept which quantifies the difference between predicted control probability and observed survival. p-val-

ues indicate whether keeping a parameter constant for all bacteria significantly alters survival prediction.

Complete data set Intermediate survival

Bacterial load Survival Bacterial load Survival

df logLik logLik p-value logLik logLik p-value

Full �1243.119 �17.85860 �800.0603 �11.48770

Control 24 �1629.965 �21.68408 0.999 �839.5523 �17.18319 0.496

t�c 8 �1660.396 �19.18941 0.954 �839.5791 �16.82534 0.030

Vc 8 �1643.985 �17.37663 1 �826.4296 �14.67760 0.173

ntip 8 �1634.382 �25.23397 0.064 �832.8896 �12.85596 0.603

Growth 24 �1798.630 �81.13355 6.512e-16 �854.1100 �11.37739 1

tlag 8 �1692.743 �16.49076 1 �835.3833 �11.30397 1

m 8 �1705.175 �61.56015 1.564e-15 �836.3794 �11.75406 0.970

sb 8 �1704.156 �21.95270 0.415 �848.2682 �12.28487 0.810

DOI: https://doi.org/10.7554/eLife.28298.028
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Variation in Tc and inter-individual variation in infection outcome
Our analyses so far indicate that variation in infection outcome is strongly dependent on t�c, which

should be determined by both the kinetics of the host immune response and the bacterial sensitivity

to host immunity. For infection by a given bacterium, with a known and constant t�c, our model pre-

dicts that inter-individual variation in infection outcome must stem from variance in time to control

(Tc), quantified by Vc. Setting this variance to zero for all infections indeed produces a probability of

control which is either zero, with all individuals dying from infection, or one, with all infections being

controlled. Since we see empirical variability in control of some infections, we hypothesized this

might arise from biological variance in Tc.

We empirically tested the hypothesis that the speed and magnitude of Imd pathway induction

might vary among individual flies, potentially resulting in variation in Tc that leads to variation in ulti-

mate infection outcome. To test this, we first determined the kinetics of Imd pathway activation after

infection with P. rettgeri by quantifying mRNA levels of the Diptericin gene, which encodes an anti-

microbial peptide and provides an excellent read-out of Imd pathway activity (Buchon et al., 2014;

Lemaitre et al., 1997). We began by measuring Diptericin expression in pools of 20 flies Canton S.

Diptericin expression was extremely low at the time of injection (Figure 7C, left), but a measurable

induction was detected at 2 hr post-injection and its level continuously increased during the first 8 hr

post-injection (up to ~100 fold induction compared to the start of the infection). Thus, the Imd path-

way is activated transcriptionally very early upon infection, well before we detected any impact on

bacterial proliferation. To test whether inducibility is variable among individual hosts, we quantified

Diptericin expression level in single flies at 4 hr post-injection (Figure 7C, right). Time points equal

or earlier than 8 hr were chosen because they occur before t�c and before we begin to see inflated

variance in the bacterial load of individual flies. At later times of infection, higher bacterial number

leads to increased immune system activation in a positive feedback loop, so variation in AMP gene

expression level becomes an indicator of the differences in bacterial loads instead of an estimation

of the variance of induction in response to a unique bacterial load. At 4 hr post-injection, however,

immune induction can be detected (Figure 7C) but immune control is not yet effective (Figure 7B)

and no divergence in bacterial load is yet observed (e.g. Figure 3D and E). At 4 hr post-injection,

we detected strong among-individual variation in Diptericin expression, ranging from little induction

to strong immune response, with approximately 5-fold difference between extremes (Figure 7C),

which may result from experimentally undetectable differences in handling, infection, or develop-

mental history. We then did paired measurements of AMP expression and bacterial loads from single

flies at 8 hr post inoculation, which is just before the predicted t�c. The Imd pathway is activated and

Diptericin is expressed primarily in the D. melanogaster fat body, most of which is located in the

abdomen, and we determined that the bacterial burden in the head of a fly is tightly correlated with

the load estimated from the thorax and abdomen: (r = 0.84, p=8.8e-9; Figure 7—figure supple-

ment 1), so we tested whether pathogen burden estimated from the heads of individual flies could

be predicted by the Diptericin expression measured from abdominal RNA extractions. We found no

significant correlation between bacterial load and the level of Diptericin transcripts 8 hr after injec-

tion (Spearman correlation: r = 0.06, S = 4225.88, p=0.75). This indicates that empirical variability in

Imd activation is independent of variation in bacterial load at the early stage of infection. The discon-

nect may allow the infections of some hosts to grow through the critical threshold ntip prior to t�c, ulti-

mately leading to host death, while the seemingly identical infections of other hosts are effectively

controlled.

Discussion
We evaluated infection of Drosophila by multiple bacteria that cover a range of pathogenicity, rang-

ing from completely lethal infections that kill all hosts to fairly benign infections where most or all

hosts survive. Most interestingly, we demonstrate binary outcome of infection with pathogens such

as P. rettgeri or E. faecalis. Even among hosts that are identical in genotype, sex and age and are

raised in a common environment, a fraction of hosts die with high bacterial burden while the remain-

der survive indefinitely with persistent low pathogen load. We identify a set of key parameters that

determine which of these outcomes occurs and we propose a general model framework to describe

the dynamic interplay between host and pathogen. We find that host death is associated with a bac-

terial load, the BLUD, which varies with host genotype and pathogen strain but does not vary with
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inoculum dose. The BLUD does not correlate with the time a host will die from infection. Instead, we

suggest that inter-individual variation in the probability of death stems from variation in the time it

takes for each individual fly to establish effective immunological control of the infection (Tc), with the

understanding that this must occur before the pathogen reaches a critical density (ntip) if control is

to be achieved. Hosts that survive their infections do so carrying a fixed bacterial load, the SPBL.

Based on the quantification of bacterial load in the host, we have built a model that describes

inter-individual variability in bacterial growth (Figure 6A). In an early phase of the infection by patho-

gens, bacterial proliferation occurs at a rate similar to that of in vitro growth, suggesting that growth

is essentially unconstrained in the first hours of infection. After a brief delay, the host immune

response becomes sufficiently active so as to limit or perhaps even reverse bacterial growth. This

time, which we parameterize as t�c in our model, will certainly depend on both the kinetics of immune

induction by the host and the sensitivity of the pathogen to the host immune response. In a follow-

ing phase of our model, the infection resolves in one of two ways. The bacteria may continue to pro-

liferate at the unconstrained rate until the host dies at a lethal load, the BLUD, or the bacteria may

cease proliferation and settle into a phase of long-term persistent infection with a burden defined as

the SPBL. In principle, the SPBL could be complete elimination of the bacteria, although we very

rarely see that with D. melanogaster hosts. We infer that the probability of an infection entering into

the lethal versus persistent state is defined by the probability that control is effective before bacteria

grow above the critical threshold density, ntip. Thus, the probability of lethal infection is most influ-

enced and therefore predicted by the rate of bacterial proliferation (m) and the average time

required to mount an effective immune response, t�c.

The simplicity of our statistical model yields some crucial insights and implications. First, a com-

plex and apparently stochastic organism-level phenotype (survival versus death) can be satisfactorily

predicted by modeling the probability of transitions between a few discrete states of infection (early

growth, uncontrollable growth, and decrease/stabilization after control). In the course of infection,

each may occur in discrete temporal phases (termed ‘early phase’, ‘resolution phase’, ‘terminal

phase’ or ‘chronic phase’ in Figure 6A) that have distinct and possibly deterministic outcomes, as

those described in (Duneau et al., 2011; Ebert et al., 2016; Hall et al., 2017; Levin and Antia,

2001; Schmid-Hempel and Ebert, 2003). Furthermore, each of these states and the parameters

that determine them has a distinct mechanistic underpinning and may be differentially subjected to

natural selection. For example, host evolution of shortened time to control through increased

inducibility of the immune response would have a different genetic basis than one that involved

reduced bacterial proliferation through host sequestration of nutrients (e.g. metal ions or carbon).

Both mechanisms might result in apparent ‘resistance’ to infection, both would contribute to

increased probability of survival from infection, and each would carry distinct costs or tradeoffs.

From the pathogen’s perspective, changes in its growth rate or sensitivity to host immune responses

would also alter the probability that they become lethal versus persistent, also with distinct mecha-

nistic bases and costs or tradeoffs. Each predictive parameter in the model can be experimentally

manipulated, and the entire model can be theoretically evaluated to identify evolutionary optima in

different environments and under different transmission requirements. We note that this model can

be easily extended to infection by other classes of pathogen, to specific tissues such as the gut, or

to hosts that display secondary immune responses (e.g., antibody-mediated acquired immune

responses).

Interestingly, the two endpoint parameters of infection, bacterial load in survivors (SPBL) and in

hosts that succumb (BLUD), were remarkably invariant among individual hosts of a same genotype

even though they varied substantially across infections by different pathogens, host species and gen-

otypes. The mechanisms underlying the death of a fly upon infection have been curiously over-

looked, and the nature of damage to D. melanogaster from bacterial infection remains elusive

(Dionne and Schneider, 2008). We find that flies die at a specific bacterial load that does not

depend on initial infection dose or eventual time to death. This implies that death is unlikely to be a

direct consequence of accumulated infectious damage, since longer term exposure to low pathogen

burdens might trigger as much damage as short-term exposure to high bacterial burden. Instead,

our results are more compatible with a model for death occurring as a consequence of sepsis or mul-

tiple organ failure driven by pathogen load (Baue, 1975). Of course, the lethal load of different

pathogens would vary depending on the toxicity of the particular pathogen. In that sense, we can

argue that the BLUD is a measure of pathogenicity of the bacterium, as it represents the minimal
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density of bacteria that kills a host. We hesitate to use the word ‘virulence’ though, because the

BLUD does not correlate with the speed at which pathogens kill or with the probability of host

death. Reciprocally, the BLUD also represents a measure of host disease tolerance (Soares et al.,

2017) as it corresponds to the maximal bacterial load that can be sustained in the host without dying

from the infection.

Our results are somewhat inconsistent with those of Haine et al., 2008, which documented rapid

cellular elimination of bacteria injected into Tenebrio molitor and posited an only minor role for the

humoral response. In contrast, our study indicates that the timing and intensity of AMP production is

the most crucial factor for controlling bacterial infection in Drosophila. One intriguing hypothesis for

reconciling the two observations is that adult Drosophila have only a small number of hemocytes

due to loss of hemocytes upon aging (Guillou et al., 2016), while this might not be the case in Tene-

brio. Thus, the relative importance of cellular versus humoral immunity may differ between the two

insects. Additionally, different bacterial pathogens were employed in the two studies, and different

microbes may be differentially sensitive to alternative arms of the immune response so generaliza-

tions should be made with caution.

We found that complete bacterial clearance rarely happens in Drosophila. With all seven patho-

gens in this study, in no case were the bacteria fully cleared from all hosts even a week after the ini-

tial infection, even in cases where 100% of hosts survived the infection. Persistent infections

stabilized at a fixed load for each pathogen, the SPBL. On rare occasion, individual flies in our study

would carry persistent infections for several days before suddenly dying with a pathogen burden

that had reached the BLUD. This suggests that there are some conditions under which a persistent

infection can re-emerge as an acute infection. This is reminiscent of chronic infections by multiple

human pathogens, including HIV, eukaryotic parasites such as Toxoplasma gondii, and bacteria such

as Salmonella enterica, Mycobacterium tuberculosis or Streptococcus pneumoniae. These parasites

are considered to be ‘specialists’ at chronic infection, yet our results suggest that qualitatively similar

phenomena can be obtained from infection with a broad range of generalist bacteria. As the SPBL

varies with both host and pathogen genotype, it is presumably subject to selection in both. In that

context, it is worth noting that forcing an infection into the persistent state is effectively a disease

tolerance strategy from the host perspective, yet the pathogen burden borne may still carry lifelong

fitness cost. From the pathogen’s perspective, either persistence or acute lethality may be favored

depending on the conditions of transmission. Moreover, selection for high growth rate due to com-

petition between bacterial genotypes within a host (Alizon et al., 2009; 2013) may trade off against

the capacity to establish persistent infection.

Levin and Antia (2001) suggested that ‘us and other living organisms are little more than soft,

thin-walled flasks of culture media’. With the present work, we argue that hosts are slightly more

complex and that potentially minute variations in host or pathogen physiology during the early

phase of infection can have dramatic effects on the ultimate outcome. We have defined three

parameters (t�c, �, nTip) that are sufficient to predict ultimate infection outcome, although we still do

not know whether variation in those parameters is due to micro-environmental variation, uncon-

trolled plasticity in developmental history, somatic mutations, or other factors that are uncontrolled

or uncontrollable in experiments (e.g. depth of penetration of the needle during injection, site at

which bacteria accumulate etc.) and in nature (e.g. time since last meal or mating, psychological sta-

tus of the fly etc.). Nevertheless, what is becoming clear is that small differences in pathogen infec-

tivity and host immunological control, especially in the early stages of infection, may manifest as

large differences in the outcome of infection.

Materials and methods

Fly stocks and husbandry
Drosophila melanogaster were reared on glucose-yeast medium (82 g/L yeast, 82 g/L glucose, 1%

Drosophila agar, supplemented with 2.5 mg/L methylparaben and 10 mL of a solution of phosphoric

and propionic acid: 41.5 ml Phosphoric Acid + 418 mL Propionic Acid + 540.5 mL distilled water). At

day two after eclosion, adults were isolated in groups of five males and five females. All experiments

were conducted with mated males 5 to 8 day post-eclosion. Rearing and experiments were con-

ducted at 25˚C (±1˚C) with a 12 hr light/dark cycle. Canton S, Oregon R and w1118 were used as
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wild-type laboratory strains. Eight fully isogenic lines from the Drosophila Genome Reference Panel

(DGRP: RAL-85, RAL-138, RAL-359, RAL-882, RAL-594, RAL-707, RAL-712, RAL-714) were randomly

chosen and used to assay the role of inter-individual genetic variation on several infection parame-

ters (Mackay et al., 2012). All wild-type stocks and isogenic lines were made axenic then re-associ-

ated with a controlled mixture of 5 bacterial species that compose the core microbiota of

Drosophila (Wong et al., 2011) to ensure homogeneity of associated microbiological communities.

Briefly, eggs of these stocks were sterilized by bleaching and reassociated with a mixture of 5 com-

mon gut microbes of Drosophila (Acetobacter pomorum, Acetobacter tropicalis, Lactobacillus plan-

tarum, Lactobacillus brevis, Lactobacillus fructivorans) as previously published. Immune mutant

stocks have been described previously and include mutants of the Imd pathway (PGRP-LE112, PGRP-

LCDE double mutants (Takehana et al., 2004), DreddEP1412 (RRID:BDSC_10456, Leulier et al., 2000)

and RelishE20 mutants (RRID:BDSC_55714, Hedengren et al., 1999), mutants of the Toll pathway

(spzrm7, [Lemaitre et al., 1996]), and mutants of the melanization cascade (double mutant PPO1D,

PPO2D, [Binggeli et al., 2014]). We used the Gal80TS; daughterless-Gal4 driver in combination with

UAS-Imd to ubiquitously induce the Imd pathway at the adult stage. To generate phagoless adult

flies, we ablated phagocytes by inducing the pro-apoptotic gene Bax in hemocytes using the hemo-

cyte-specific driver Hml-Gal4 (Hml-Gal4 >UAS GFP [RRID:BDSC_30140]; UAS-Bax, Gal80TS) in adult

flies at 2 days post-eclosion (Defaye et al., 2009).

Bacterial infection
The bacterial strains used in this study include the Gram-negative Providencia rettgeri (strain Dmel)

(Juneja and Lazzaro, 2009), P. burhodogranariea (Juneja and Lazzaro, 2009), Serratia marcescens

(strain Db11) (Kurz et al., 2003), E. coli (Type strain), Pectinobacterium carotovorum carotovorum

15 (strain Ecc15-GFP; formerly genus Erwinia, [Basset et al., 2000]), Pseudomonas entomophila

(Vodovar et al., 2005), and Providencia alcalifaciens (Juneja and Lazzaro, 2009), as well as the

Gram-positive Enterococcus faecalis (isolated from wild-caught D. melanogaster by B. Lazzaro), and

Staphylococcus aureus (strain PIG1 [Liu et al., 2005]). Cultures were grown to saturation overnight

at 37˚C (29˚C for E. carotovora) in LB liquid medium (LB broth, Miller, VWR). Saturated cultures were

suspended and diluted in Phosphate Buffered Saline (PBS, pH 7.4) to the desired optical density

(OD600 = 1 or as otherwise indicated). We injected 23 nL of bacterial suspension (c.a. 30,000 bacteria

for OD600 = 1) into each fly abdomen using a Nanoject II (Drummond) (Khalil et al., 2015). Flies

were anesthetized with light CO2 for about five minutes during the injection procedure and were

observed shortly after injection to confirm recovery from manipulations. We measured host survivor-

ship post-injection in groups of 20 or 50 males kept with ad libitum access to food. Differences in

survivorship were tested with Cox regression models (R package Survival).

Within-host bacterial load dynamics and BLUD estimation
To characterize the dynamics of within-host bacterial loads, after being dipped in Ethanol 70% and

washed in PBS to limit contamination by external bacteria, individual flies were homogenized in 500

ml of sterile PBS with an HT homogenizer (OPS Diagnostics) at each timepoint post-injection. The

homogenate was then diluted to 1:100 or 1:1000 in PBS to ensure that plate counts remained within

the limits of resolution of the plating system. We plated 70 ml onto LB agar using a WASP II Auto-

plate spiral plater (Microbiology International). Plates were incubated overnight at 37˚C (29˚C for E.

carotovora) and bacterial colonies were counted using an EZ-Count Automated Colony Counter

(Microbiology International) to estimate the number of viable bacteria per fly. To estimate the Bacte-

rial Load Upon Death (BLUD), infected hosts were checked every 30 min and newly dead flies (flies

not moving and on their side or back) were collected and homogenized, with bacterial load quanti-

fied as described above.

Gene expression by RT-qPCR
Total RNA was extracted from either 20 flies or single flies with TRIzol reagent (Invitrogen). Template

RNA (1 mg) was used to generate cDNA by reverse transcription using the SuperScript II cDNA syn-

thesis kit (Promega) and then analyzed by quantitative polymerase chain reaction (qPCR) using the

PerfeCTa SYBR Green SuperMix (Quantabio). Expression values were normalized to RpL32. Primer

sequences are available in method supplementary 1. At least three independent repeats were done.
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Statistical analyses
We used non-parametric tests to compare bacterial loads between groups of flies: Wilcoxon for two

groups comparison and Kruskal-Wallis for more than two groups. The only exception was the com-

parison of loads between immune deficient mutants and wild-type controls, where, to take into

account that we used more than one genotype to test the same biological hypothesis, we used a lin-

ear regression with genotype as a random effect. We used Spearman correlations to assess the rela-

tionship between bacterial loads and several quantitative traits (initial inoculum, time to death, and

Dpt expression). All data analysis was performed using R version 3.3.1 (R Core Team , 2017).

Model of growth dynamics
Our results demonstrate that experimentally identical hosts exposed to the same pathogenic infec-

tions can either control the infection or succumb to acute bacterial proliferation. In addition, we see

that bacterial growth in the absence of immune control has a similar rate to that of in vitro LB cul-

tures (see Results). We therefore built a model that consists of a mixture of two demographic mod-

els, one describing within-host bacterial growth and one modeling bacterial elimination (see

Figure 6A for a representation of the conceptual model this statistical model is based upon). More

precisely, we considered that each bacterial load estimated on a single fly (n) was a log-normal ran-

dom variable with the mean computed from a Baranyi model (Baranyi and Roberts, 1994) when

bacteria grow in the host uncontrolled by the fly’s immune system with

nt ¼ nmax
e�t � 1þ e�t

lag

e�t � 1þ e�t
lag nmax

n0

or from an exponential decrease model, when bacteria are controlled by the host, with

nt ¼ 1þ nc � 1ð Þe�dt

With increasing time, t, n begins at n0 and approaches nmax in the Baranyi model, while it

decreases from nc to asymptotically reach zero in the exponential decrease model. Actual bacterial

load was assumed to follow a log-normal distribution, with average given by either of the two previ-

ous equations and variance fixed at s2
b for the Baranyi model and s

2
d for the exponential decrease.

To reflect the probabilistic nature of the infection process, we developed a model to compute

the probability that bacteria are either controlled (and thus have an exponential decrease) or are not

(and thus have a Baranyi growth dynamic). We considered that the time required for the host

immune defense to efficiently control bacterial infection follows a Gamma distribution with a fixed

average tlag + t�c and a variance Vc. t�c is the average time host defenses take to control bacteria after

they have started to grow (Tc), and Vc quantifies inter-individual variation in Tc. We further assumed

that the host cannot control infections after the bacterial load reaches a fixed threshold, which we

termed the tipping point (ntip). The eleven parameters of this model are all described in Table 1.

Under the model, the probability that a host survives infection is the probability that the control

of bacterial growth occurs before the tipping point is reached. More precisely, if Pc is the probability

of survival, ttip is the time at which the tipping point is reached, and Tc is a random variable corre-

sponding to the time of control observed for a given host, we can write

Pc ¼ Pr Tc < ttip
� �

The probability of survival Pc therefore depends on parameters that determine how fast bacteria

grow initially (n0, nmax, t
lag, m), on the tipping point itself (ntip), and on parameters, t�c and Vc, that

govern the distribution of time to control Tc.

All these parameters can be estimated by adjusting the model on experimental data consisting of

bacterial loads measured over time in different individuals. This was performed by computing the

likelihood of the model for each bacterial load x observed at time t as

L log2x; tð Þ ¼ Lb log2x; tð Þ 1� ptð ÞþLd log2x; tð Þpt

where Lb log2x; tð Þ is the likelihood under the Baranyi model and Ld log2x; tð Þ the likelihood under

the exponential decrease model. The global log-likelihood of the model is then obtained by sum-

ming log-likelihoods computed for each point of the datasets. This was possible because each point
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of our data set consists of a single individual host, and all measurements at all sampling times are

therefore somewhat independent from each other (i.e. the measurements are not repeated on the

same fly). We illustrated simulated outcomes of this model of within-host dynamics in Figure 6—fig-

ure supplement 1.

We estimated the 11 parameters of this mixture model by maximizing log-likelihood, using the

Optim procedure in R. Confidence intervals for parameter estimates were then obtained by boot-

strapping data for each experimental time point. This model, once adjusted, allows estimation of the

probability that a host controls an infection by computing the probability that effective control

occurs before ntip is reached. Probability of control therefore depends on the parameters of the Bar-

anyi model (n0, nmax, t
lag, m) and of those describing the distribution of time to control (t�c, Vc, ntip).
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