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Summary

The maintenance of genetic variation [1–3] and sex [4–8]

despite its costs [9] has long puzzled biologists. A popular
idea, the Red Queen Theory [4–8], is that under rapid antag-

onistic coevolution between hosts and their parasites, the
formation of new rare host genotypes through sex can be

advantageous as it creates host genotypes to which the
prevailing parasite is not adapted. For host-parasite coevo-

lution to lead to an ongoing advantage for rare genotypes,
parasites should infect specific host genotypes and hosts

should resist specific parasite genotypes. The most promi-
nent genetics capturing such specificity are matching-allele

models (MAMs), which have the key feature that resistance
for two parasite genotypes can reverse by switching one

allele at one host locus. Despite the lack of empirical sup-
port, MAMs have played a central role in the theoretical

development of antagonistic coevolution [4, 7, 8, 10], local
adaptation [11, 12], speciation [13], and sexual selection

[14]. Using genetic crosses, we show that resistance of the
crustacean Daphnia magna against the parasitic bacterium

Pasteuria ramosa follows a MAM. Simulation results show

that the observed genetics can explain the maintenance of
genetic variation and contribute to the maintenance of sex

in the facultatively sexual host as predicted by the Red
Queen Theory.

Results and Discussion

The planktonic crustacean Daphnia magna is a cyclic parthe-
nogen, allowing for genetic crosses to be performed and the
resulting recombinants to be maintained as clonal lineages.
Two Daphnia genotypes (Fa and X) from a rock pool metapo-
pulation in southwestern Finland were selfed for three rounds
and then used to create a set of crosses (Figure 1). Multiple
replicates of each recombinant genotype were tested for re-
sistance against two genotypes of P. ramosa (C1 and C19)
via two methods, attachment and infection trials [15, 16].
These P. ramosa genotypes differ in the Daphnia genotypes
they can infect and were known to differentially infect the
parents of our crosses. Recombinant offspring of all crosses
were fertile and no differences in hatching probabilities
from resting eggs were detected. We observed Mendelian
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segregation of resistance for both parasites in two separate
crosses (F2 and parent 1 selfed) (Table 1 and Figure 1A). In
both cases, resistance was dominant and susceptibility was
recessive. A backcross (F1 with parent 1) revealed that individ-
uals were either susceptible to both P. ramosa clones (26%) or
were only resistant to one (C19; 23%) or the other (C1; 51%).
The absence of individuals resistant to both P. ramosa geno-
types indicated that resistance to these parasites was not
independently inherited. Indeed, selfing of ten of the back-
cross genotypes showed that those observed to be C1 resis-
tant were in fact comprised of two different genotypes
(Figure 1B). These results may either reflect the presence of
intralocus interactions (dominance) or indicate interlocus
interactions (epistasis). Under the dominance model, resis-
tance would be coded for by a single locus with three alleles
(x, y, z) with a dominance hierarchy. Allele x provides resis-
tance against C1 but susceptibility to C19, which is dominant
over allele y, which provides resistance against C19 and sus-
ceptibility to C1. In addition, both resistance alleles (x and y)
show dominance over a third allele, which does not confer
resistance to the either P. ramosa C1 or C19. Under the epis-
tasis model, resistance would be coded for by two loci, each
with two alleles (A/a and B/b), dominant resistance (C1 resis-
tance allele ‘‘A’’ and C19 resistance allele ‘‘B’’), and epistasis
between both dominant resistance alleles. Individuals carrying
the ‘‘A’’ allele are susceptible to P. ramosa C19 regardless of
the presence of the ‘‘B’’ allele, which, in the absence of ‘‘A,’’
normally confers resistance to C19. To distinguish between
both types of interactions, we performed multiple crosses
(n = 118) with two backcrossed genotypes (c*d, Figure 1B
and Table 1). The absence of double susceptible individuals
indicated that a dominance hierarchy on one locus could
explain the data. Presence of epistasis between two loci may
still explain the data, but only if the loci are closely linked.
Recombination would be so rare that it is difficult to detect it
in breeding studies and the two loci would behave like a single
locus. Our findings are consistent with the results from a
previous study that speculated that resistance of D. magna
against two isolates of P. ramosa was dominant for one and
recessive for the other isolate [17].
This study of host resistance genetics in the Daphnia-

Pasteuria system provides the first empirical evidence consis-
tent with a matching-allele model (MAM). Characteristic of
MAMs is that a parasite can only infect when its alleles match
those of its host or a host can only resist the parasite when its
alleles matches that of the parasite. This key feature has been
implemented in different ways in the family of MAMs, such as
inverse matching versus matching [12, 18], variable number of
matching loci [18, 19], variable number of alleles per locus
[11, 18, 19], and different ploidy levels of hosts and parasites
[5, 8, 10]. The important aspect distinguishing MAMs from
alternative genetic models is that the resistance/susceptibly
effects for the two parasites can reverse by switching an allele
at one host locus. Both our dominance (one-locus) and epis-
tasis (two-locus) models fulfill this criterion (under the two-
locus model a substitution at a single locus can switch the
outcome of the infection process due to the epistasis between
both loci). Furthermore, under both the dominance and
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Figure 1. Pedigree Showing the Crossing

Scheme and Resistance Profiles of Daphnia

magnaGenotypes against TwoPasteuria ramosa

Genotypes, C1 and C19

The F1, F2, and backcross (A) and selfing of, and

crosses among, ten backcrossed individuals (B)

are shown. ‘‘N’’ represents the total number of

recombinants tested over multiple independent

crosses (details in Table 1) and percentages

reflect segregation patterns. Two genetic models

are shown: a one-locus model with alleles z, y,

and x and a two-locus model with two alleles at

each locus (A,a and B,b).
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epistasis models, resistance/susceptibility only occurs in spe-
cific combinations of host and parasite alleles (Table 2).
Although we only used a small subset of host and parasite
genotypes, the here-found genetics may apply to other com-
binations of P. ramosa and D. magna as high specificity, a
signature from MAMs, has been found for numerous
P. ramosa-D. magna combinations [20–22]. Although (inverse)
gene-for-gene models [23, 24] can also result in such speci-
ficity these models also predict the presence of universally
resistant hosts or universally infective parasites and previous
studies suggest that these do not occur in the Daphnia-
Pasteuria system [e.g., 20–22]. These studies tested diverse
hosts and parasite isolates and did not find any host clone
that was resistant to all parasites or any parasite isolate that
was infective in all host clones. Furthermore, time series using
archived D. magna and P. ramosa resting stages from lake
sediment cores did not show any selective sweeps associated
with universally infective parasites or universally resistant host
genotypes [25]. Irrespective of the underlying genetics of
resistance for untested combinations of P. ramosa and
D. magna the here-found reversal in resistance by switching
a single allele at one host locus confirms the key feature of
MAMs. This criterion can be applied even if only part of the
interaction matrix is known.

Under a matching-allele model, infection is based on a
recognition process between host and parasites. In the
Daphnia-Pasteuria system, recognition occurs when ingested
spores attach to the esophagus of sus-
ceptible hosts. Upon successful attach-
ment, P. ramosa enters the host and
proliferates in the hemolymph and mus-
cle [15]. A putative explanation consis-
tent with our results and others [15] is
that gene products of the loci/locus
described here prevent attachment of
P. ramosa to the host esophagus either
by actively disrupting adherence of
P. ramosa spores or by blocking target
receptors. Such a mechanism would
fit with the family of matching-allele
models, which are based on the ability
of the host to recognize and resist
attack by parasites [11, 18].

MAMs have played a central role in
the theoretical development of antago-
nistic coevolution and were shown to
readily lead to time lagged negative
frequency dependent selection, mainte-
nance of genetic variation [1, 10, 18] and
sex [4, 5, 8], pertinent issues in ecology and evolutionary
biology. A simulation model (for model methods, see the
Supplemental Experimental Procedures available online)
based on the here-observed genetics indeed shows that
coevolution between Daphnia and Pasteuria can maintain
genetic variation indefinitely (Figure 2). Empirical studies are
consistent this observation: the Daphnia-Pasteuria system is
one of the few systems with evidence for rapid antagonistic
coevolution, consistent with negative frequency dependent
selection [25, see 26, 27 for other systems]. Furthermore, the
observation of high within-population variation for resistance
[20] but low among-population variance [28] is consistent
with expectations for traits experiencing such a selection
regime [29]. The Daphnia system can now be used to empiri-
cally test specific predictions of the Red Queen Theory, such
as negative frequency-dependent selection and the notion
that antagonistic coevolution may favor sex. Models show
that sex is only favorable under a limited set of conditions
[5, 8], and it remains an open question whether real biological
systems fall within this parameter space. Our simulationmodel
suggest that the D. magna-P. ramosa system may fall into this
parameter space as simulations with realistic parameter
settings show an advantage for sex by segregation that may
partly alleviate or overcome the costs of sex (Table S2).
Although the majority of studies attempting to explain the
widespreadoccurrence of sexual reproductionby antagonistic
coevolution have focused on the effects of recombination



Table 1. Details of Each Cross of the Breeding Scheme Shown in Figure 1

Cross (as Shown

in Figure 1)

Expected Genotype under

the One-Locus Model

Expected Genotype under

the Two-Locus Model

Observed/Expected (%)

n p Value

C1 sus,

C19 sus

C1 sus,

C19 res

C1 res,

C19 sus

C1 res,

C19 res

Parent 1 yz aaBb 0/– 100/– 0/– 0/– 1 –

Parent 2 xx AAbb 0/– 0/– 100/– 0/– 1 –

Selfed parent 1 yz , yz aaBb , aaBb 18/25 82/75 0/0 0/0 22 0.72

Selfed parent 2 xx , xx Aabb , AAbb 0/0 0/0 100/100 0/0 24 1.00

F1 xx , yz Aabb , aaBb 0/0 0/0 100/100 0/0 1 –

F2 xz , xz Aabb , Aabb 21/25 0/0 79/75 0/0 68 0.69

Backcross xz , yz Aabb , aaBb 23/25 26/25 51/50 0/0 164 0.94

a clone 1 selfed yz , yz aabb , aabb 21/25 79/75 0/0 0/0 38 0.79

a clone 2 selfed yz , yz aabb , aabb 17/25 83/75 0/0 0/0 47 0.45

b clone 1 selfed xz , xz Aabb , Aabb 19/25 0/0 81/75 0/0 26 0.74

b clone 2 selfed xz , xz Aabb , Aabb 31/25 0/0 69/75 0/0 64 0.56

c clone 1 selfed xy , xy AaBb , AaBb 0/0 17/25 83/75 0/0 35 0.56

c clone 2 selfed xy , xy AaBb , AaBb 0/0 25/25 75/75 0/0 68 1.00

c clone 3 selfed xy , xy AaBb , AaBb 0/0 22/25 78/75 0/0 49 1.00

c clone 4 selfed xy , xy AaBb , AaBb 0/0 30/25 70/75 0/0 27 1.00

d clone 1 selfed zz , zz aaBb , aaBb 100/100 0/0 0/0 0/0 30 1.00

d clone 2 selfed zz , zz aaBb , aaBb 100/100 0/0 0/0 0/0 39 1.00

c 3 d crosses 1a zz , xy aabb , AaBbb 0/0 45/50 55/50 0/0 62 0.85

c 3 d crosses 2a zz , xy aabb , AaBbb 0/0 46/50 54/50 0/0 56 0.72

The table shows the total number of host clones tested per cross (n) and the percentage of these clones that where either susceptible (sus) or resistant (res).

The top part of the table shows the parental, F1, F2, and backcross, and the bottom shows results obtained from selfing and crossing of ten genotypes from

the backcross. The p value represents a Fisher’s exact test between the number observed and expected under both genetic models.
aCrosses were done in two blocks.
bAs expected under perfect linkage.
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among loci [4, 5, 10, 19], theoretical work shows that in diploids
segregation may overwhelm the effects of recombination
and that segregation alone can under some conditions favor
sex [8].

A MAM is the most extreme form of specificity in biological
interactions and has been assumed in many theoretical
models addressing questions not only related to the mainte-
nance of sex and genetic diversity, but also to local adaptation
[11, 12], speciation [13], and sexual selection [14]. Our results
show for the first time, that different alleles at the same locus
can indeed select for specific genotypes of an antagonist,
confirming a key assumption of these models. Thus, our
results close a long-standing gap between theory and real
biological systems. Findings from theoretical models that
use the matching-allele assumption therefore gain substan-
tially credibility.
Table 2. The Daphnia-Pasteuria Genetics Matrix

Host Genotype

under the

One-Locus Model

Host Genotype

under the

Two-Locus Model

Parasite

Genotype: C1

Parasite

Genotype: C19

xx AA22 resistant susceptible

xy/xz Aa22 resistant susceptible

yy/yz aaB2 susceptible resistant

zz aabb susceptible susceptible

The matrix follows a matching-allele model (see Table S1) because replace-

ment of one allele ‘‘y’’ versus ‘‘x’’ or ‘‘a’’ versus ‘‘A’’ in the one- and two-locus

models, respectively, reverses resistance to the two parasite genotypes.

Double susceptible animals will likely be selected against and these alleles

may be lost, unless they provide resistance against untested genotype of

P. ramosa or if resistance alleles carry a cost. The ‘‘2’’ represents the

presence of an allele that has no influence on the phenotype due to epistasis

or dominance. See also Table S1 for a matching-allele model for a diploid

host and haploid parasite.
Experimental Procedures

Details for crosses and both methods used to assess resistance (infection

trials and attachment tests) are described in a previous study [16], in which

assays with P. ramosa genotype C19 were similar to C1, protocols for the

selfed backcross were identical to those of the selfed parents, and proto-

cols for crosses between two pairs of the backcross were identical to those

of the backcross. In short, selfed lineages were produced by hatching of

sexual resting eggs frommonoclonal laboratory populations of their respec-

tive parent clone. For the creation of the F1 offspring, we collected sexual

resting eggs from a mixed laboratory population of both parents and used

microsatellites to distinguish between selfed and outcrossed offspring.

For the other crosses, we placed virgin females of one parent together

with males of the other and removed all parthenogenetic offspring to pre-

vent selfing. All sexual resting eggs were removed as they appeared, dried
Figure 2. Maintenance of Genetic Variation through Negative Frequency-

Dependent Selection

Under all parameter settings of the simulation model, genetic variation was

maintained. The figure shows cycles of antagonistic coevolution between

Daphnia and Pasteuria (parameter settings v = 0.8 and t = 0.9). Gray,

frequency of the host allele for C19 resistance and C1 susceptibility; black,

frequency of parasite C1. The figure shows the dynamics after a burn in of

10,000 generations. Simulation model methods can be found in the

Supplemental Experimental Procedures. See also Table S2 for simulation

model results on the evolution of sex.
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for at least 14 days, hatched, and maintained as clonal lineages in the

laboratory. Four individuals of each recombinant lineage were tested with

the attachment test. This test visualizes the attachment of the spores

to the host esophagus by using fluorescence-labeled spores and correlates

perfectly with host susceptibility [15]. For a subset of the crosses, we also

performed infection trials by exposing up to eight D. magna females per

recombinant genotype individually to 200,000 spores of P. ramosa and

scoring infection status 30 days after exposure. All statistics were

performed with Fisher’s exact test.
Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and two tables and can be found with this article online at http://dx.doi.org/

10.1016/j.cub.2013.04.064.
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4. Salathé, M., Kouyos, R.D., and Bonhoeffer, S. (2008). The state of affairs

in the kingdom of the Red Queen. Trends Ecol. Evol. 23, 439–445.

5. Otto, S.P., and Nuismer, S.L. (2004). Species interactions and the evolu-

tion of sex. Science 304, 1018–1020.

6. Jaenike, J. (1978). An hypothesis to account for the maintenance of sex

within populations. Evol. Theory 3, 191–194.

7. Lively, C.M. (2010). A review of Red Queenmodels for the persistence of

obligate sexual reproduction. J. Hered. 101 (Suppl 1 ), S13–S20.

8. Agrawal, A.F. (2009). Differences between selection on sex versus

recombination in red queen models with diploid hosts. Evolution 63,

2131–2141.

9. Meirmans, S., Meirmans, P.G., and Kirkendall, L.R. (2012). The costs of

sex: facing real-world complexities. Q. Rev. Biol. 87, 19–40.

10. Hamilton, W.D. (1993). Haploid dynamic polymorphism in a host

with matching parasites: effects of mutation/subdivision, linkage, and

patterns of selection. Heredity 84, 328–338.

11. Gandon, S., Capowiez, Y., Dubois, Y., Michalakis, Y., and Olivieri, I.

(1996). Local adaptation and Gene-For-Gene coevolution in a metapo-

pulation model. Proc. R. Soc. Lond. 263, 1003–1009.

12. Dybdahl, M.F., and Storfer, A. (2003). Parasite local adaptation: Red

Queen versus Suicide King. Trends Ecol. Evol. 18, 523–530.

13. Kawecki, T.J. (1998). Red queen meets Santa Rosalia: arms races and

the evolution of host specialization in organismswith parasitic lifestyles.

Am. Nat. 152, 635–651.

14. Hamilton, W.D., and Zuk, M. (1982). Heritable true fitness and bright

birds: a role for parasites? Science 218, 384–387.

15. Duneau, D., Luijckx, P., Ben-Ami, F., Laforsch, C., and Ebert, D. (2011).

Resolving the infection process reveals striking differences in the

contribution of environment, genetics and phylogeny to host-parasite

interactions. BMC Biol. 9, 11.

16. Luijckx, P., Fienberg, H., Duneau, D., and Ebert, D. (2012). Resistance to

a bacterial parasite in the crustacean Daphnia magna shows Mendelian

segregation with dominance. Heredity (Edinb) 108, 547–551.
17. Little, T.J., Watt, K., and Ebert, D. (2006). Parasite-host specificity:

experimental studies on the basis of parasite adaptation. Evolution

60, 31–38.

18. Frank, S.A. (1993). Specificity versus detectable polymorphism in host-

parasite genetics. Proc. Biol. Sci. 254, 191–197.

19. Hamilton, W.D., Axelrod, R., and Tanese, R. (1990). Sexual reproduction

as an adaptation to resist parasites (a review). Proc. Natl. Acad. Sci. USA

87, 3566–3573.

20. Carius, H.J., Little, T.J., and Ebert, D. (2001). Genetic variation in a

host-parasite association: potential for coevolution and frequency-

dependent selection. Evolution 55, 1136–1145.

21. Luijckx, P., Ben-Ami, F., Mouton, L., Du Pasquier, L., and Ebert, D.

(2011). Cloning of the unculturable parasite Pasteuria ramosa and its

Daphnia host reveals extreme genotype-genotype interactions. Ecol.

Lett. 14, 125–131.

22. Ebert, D. (2008). Host-parasite coevolution: Insights from the Daphnia-

parasite model system. Curr. Opin. Microbiol. 11, 290–301.

23. Thompson, J.N., and Burdon, J.J. (1992). Gene-For-Gene coevolution

between plants and parasites. Nature 360, 125.

24. Fenton, A., Antonovics, J., and Brockhurst, M.A. (2009). Inverse-gene-

for-gene infection genetics and coevolutionary dynamics. Am. Nat.

174, E230–E242.

25. Decaestecker, E., Gaba, S., Raeymaekers, J.A.M., Stoks, R., Van

Kerckhoven, L., Ebert, D., and De Meester, L. (2007). Host-parasite

‘RedQueen’ dynamics archived in pond sediment. Nature 450, 870–873.

26. Koskella, B., and Lively, C.M. (2009). Evidence for negative frequency-

dependent selection during experimental coevolution of a freshwater

snail and a sterilizing trematode. Evolution 63, 2213–2221.

27. Thrall, P.H., Laine, A.-L., Ravensdale, M., Nemri, A., Dodds, P.N.,

Barrett, L.G., and Burdon, J.J. (2012). Rapid genetic change underpins

antagonistic coevolution in a natural host-pathogen metapopulation.

Ecol. Lett. 15, 425–435.

28. Ebert, D., Zschokke-Rohringer, C.D., and Carius, H.J. (1998). Within-

and between-population variation for resistance of Daphnia magna to

the bacterial endoparasite Pasteuria ramosa. Proc. R. Soc. Lond. 265,

2127–2135.

29. Schierup,M.H., Vekemans, X., andCharlesworth, D. (2000). The effect of

subdivision on variation at multi-allelic loci under balancing selection.

Genet. Res. 76, 51–62.

http://dx.doi.org/10.1016/j.cub.2013.04.064
http://dx.doi.org/10.1016/j.cub.2013.04.064

	A Matching-Allele Model Explains Host Resistance to Parasites
	Results and Discussion
	Experimental Procedures
	Supplemental Information
	Acknowledgments
	References


